

<u>Signal Analysis</u> - <u>Homework 07</u> (Fourier Series - continuous)

1) - For the periodic signal x(t) below calculate the first 9 *coefficients* of the Trigonometric Fourier series (i.e., a₀, a₁, b₁, a₂, b₂, a₃, b₃, a₄ and b₄).

Then write 9 first terms of the Fourier series of x(t).

In Matlab, sketch some graphs using the "**plot** (t, x)" for the Fourier series of x(t) with 1 term, 2 terms, 3 terms,... and see if the graph is approaching the original signal.

2) – For the periodic signal x(t) below find the expression of all the *coefficients* of the **Trigonometric Fourier series** (i.e., a_k , $e \ b_k$, $\forall k$). Then calculate the value of the 9 first terms of the **Trigonometric Fourier series** of x(t).

In Matlab, sketch some graphs using the "**plot** (t, x)", for the Fourier series of x(t) with 1 term, 2 terms, 3 terms, ... and see if the graph is approaching the original signal.

3) – For the signal of the previous exercise calculate x(t) for $t = \pi/2$ using the Fourier series and see if it converges to 1. (i.e., verify that $x(0,5\pi) = 1$). The expression generated allows to calculate the value of π . This was the way that Leibniz calculated π in the XVIIth century.

4) – The Trigonometric Fourier series of the continuous periodic signal x(t) with fundamental frequency $\omega_0 = \pi$ have the following coefficients:

$$a_0 = -2$$
, $a_k = 0$, $k = \pm 1, \pm 2, \pm 3, \cdots$, $b_k = \frac{2}{k^2}$, $k = \pm 1, \pm 2, \pm 3, \cdots$

a) – Find the coefficients c_k 's of the Complex Fourier series of this signal x(t).

b) – Find the coefficients c_k 's of the Complex Fourier series of the signal

$$y(t) = x'(t) = dx/dt$$
 [the derivative of $x(t)$].

- c) Find also the coefficients a_k 's and b_k 's of the Trigonometric Fourier series of the signal y(t).
- 5) The Trigonometric Fourier series of the continuous periodic signal x(t) with fundamental frequency $\omega_0 = \pi/2$ has the followings coefficients:

$$a_0 = -1;$$
 $a_k = \frac{2}{k}, \quad k = 1, 2, \cdots$ $b_k = 0, \quad k = 1, 2, \cdots$

Write the signal $y(t) = x^*(t)$ (*conjugate*) in the form of the Complex Fourier series.

6) – The Trigonometric Fourier series of the continuous periodic signal x(t) with fundamental frequency $\omega_0 = \pi/2$ has the following coefficients:

$$a_0 = -1;$$
 $a_k = \frac{2}{k}, \quad k = 1, 2, \cdots$ $b_k = \frac{2}{3k}, \quad k = 1, 2, \cdots$

On the other hand, continuous periodic signal y(t) is given by: $y(t) = -3 \sin(\pi t) + 5$.

a) – Find the coefficients c'_k of the signal $x^*(t)$, *conjugate of* x(t), in the form of the Complex Fourier series.

b) – Find the coefficients $c_k^{\prime\prime}$ of the signal y(t) in the form of the Complex Fourier series.

c) – Find the coefficients $\tilde{a}_k e \tilde{b}_k$ of the signal $v(t) = x^*(t) y(t)$ in the form of the Trigonometric Fourier series.

7) – Express the signals x(t) of the graphs below in both forms of the Fourier series (trigonometric and complex).

In the cases where x(t) is not a periodic signal, then we should imagine the expansion of x(t) to both sides repeatedly in order to become periodic.

