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Frequency domain analysis

The frequency response is the output of the system in steady state
when the input of the system is sinusoidal

Methods of system analysis by the frequency response, as the
“Bode Diagrams” or the “Nyquist Plot”, are the most conventional

techniques used in Engineering for analysis and project of Control
Systems
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The advantage of these methods of analysis of systems by the
frequency response is that they allow us to find both the absolute
and relative stability of linear systems in closed loop only with the
knowledge of frequency response in open loop, which can be
experimentally obtained with signal generators (sinusoidal) and

precision measurements instruments (both easily available in
laboratory)
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Therefore, the analysis of complicated systems can be done through
tests of frequency response without being necessary to determine the
roots of the characteristic equation (i.e., the poles of the system)

Linear time invariant system,
zero initial conditions

X(t) = sen ot y(t) =Y sen (wtt+¢)

The output y(t) will have the sam€ frequency of the input X(t), but,

the amplitude Y and the phase angle (,

will be, in general, different.
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As a matter of fact, we have

G(w) X(o)
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That is, doing s = 0 + jwin the transfer function G(s), one
obtain G(Jw)

GGw) = |G({w)|-ei®
= | G(jw) | - 76w
|\ ~ J
Absolute Phase of
value of G(jw)
Gw)

where the phase

. Im(G(jw)
¢ = LIGw) = arctg( m©y

Re(G(jw)
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As the input x(t) = sin(wt) can be expressed as
el — g1 ~
X(t) — sin (O)t) — (equacdo de Euler)
2)

then it can be shown that y, , the output y(t) in steady state, is
joot —jot
. el™ —e
Yo =|GGW) |-

and therefore,

Y =|GGw) |- sin( ot + HG([w) )
D e —
Y ¢
(Absolute value) (Phase)

2)
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The most general case, the sinusoidal input with absolute value X

and phase

Xx(t) = X : sin(ot + @)

hence, y.., the output y(t) in steady state, becomes

V.. =X | G(jw) |- sin( ot +
%—l
Y

(Absolute
value)

G(jw) + o)
e —
Y(w)
(Phase)
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‘ G (] ) ‘ Y(] (JL)) Y ratio between the
0y — . — d the i ’
X (] ) X qutgltl{ttuzr; the input’s

difference between

(I) — G(](JO) — Y(jw)_ X(]OL)) the phase angle of

the output and the
input

Then, the characteristic of a system subject to a sinusoidal input
can be obtained directly from

. Y (] , .
Gl = = =1Go) e (nih)




Frequency domain analysis

Gw) = §%0(j))) - ‘ G(w) ‘ eI <sim|1:;-c|)-.idal>
where the phase
(<0 phase delay
¢ =LGJw)= < = in phase
> () phase in advance
being \
T < O < T

Se 0 =1 = sin(otxm) = — sin(ot)
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In the next 2 slides we shall see an EXAMPLE of the curves:

Bode Diagram de G(jw)

absolute value e phase (or angle)

Nyquist Plot de G(jw)

parametrized by frequency ()

that is,
the next 2 slides are generic curves to EXEMPLIFY how the
Bode Diagrams and Nyquist Plots are.
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Bode Diagram (example)

|G(jw)| dBT

LGGw)

The w axis are drgwn in the
logarithmic scale.

Obtained drawing a curve
for the absolute value of
G(jw) and another for the
phase, or angle of G(jw).

W

|G(jw) |45 IS measured
in dBs

W

[1G(jw) is measured
in degrees
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Nyquist Plot (example)

Obtained drawing in the complex plane the values of G(jw)
when () varies from -0 to +00,

Im {G(w)}

Re {G(w)}

with the Nyquist Plot of G(jw)
we can apply the ‘Nyquist Criterion’ to determine the stability
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Nyquist Criterion for stability

Harry Nyquist worked with the AT&T Company in
1917 and went on to produce 138 patents in the

area of telephone and television transmission, as
well as collecting many honours and awards.

Nyquist created the diagrams for defining
stable conditions in negative feedback

systems and the Nyquist sampling theory Harry Theodor:Nyqvist
in digital communications. (sueco, 1889-1976)

The following is an Example of how to determine the direction
and the number of encirclements of the Nyquist Plot
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In the next slides we shall see two EXAMPLES of:

the direction and the number of encirclements of the

Nyquist Plot of G(jw)

We will use a generic curves only to EXEMPLIFY how to find the
direction and how to calculate the number of encirclements of
the Nyquist Plot.
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The direction of the Nyquist Plot

In order to give a direction to the Nyquist Plot, we follow
G(Jw) when W varies from +00 to —00

Im{G(jw)}

Consider this curve G(jw) below:

Q
V.
@/

To follow G(jw) when w varies from +c0 to —od; it may be necessary to
calculate additional points of (W as in this Nyquist Plot above
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The direction of the Nyquist Plot

Following G(jw) through the points W = 0 and £00 we can determine
the direction of the Nyquist Plot

Im{G(jw))

Q
V.
@/

By calculating some additional points, we canjthen follow even better

G(Jw) when W varies from +o0 to —oo and then give a direction to this
Nyquist Plot above
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The direction of the Nyquist Plot
By choosing a () between +co and O (such as W = 4) it is possible to follow
G(w) and determine the direction of this Nyquist Plot

Im{G(jw))

Q
Y
@/

I
w=44

Calculating G(jw) for W = 4 we can write doyn this point G(j4) in the
Nyquist Plot above




Frequency domain analysis

The direction of the Nyquist Plot

Although it is not necessary, let us also write down 1 point more in
the plot G(jw) below: W= —4

Im{G(jw))

_ We can observe the property
W= +4 that the Nyquist Plot is
always with
respect to the real axis
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The direction of the Nyquist Plot

Now we can put arrows that indicate the direction of this
Nyquist Plot G(jw)

Im{G(jw))

w=-4
—
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The direction of the Nyquist Plot

Im{G(jw))

With the direction of (G(jW) we can define the number of
encirclements of a point at real axis that the Nyquist Plot does




Frequency domain analysis

The number of encirclements of the Nyquist Plot

The number of encirclements of G(jw) around a point at the real axis has
the signhal

{posmve —> if counter clockwise Im{G(jw)}

negative = if clockwise

~
—

For example: The number of point A= N, =0

encirclements of G(jw) = .
around a point point B = Ng=-1
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The direction of the Nyquist Plot

Now let's see another example of how to give a direction to the
Nyquist Plot, we follow G(jw) when W varies from +00 to —0

Im{G(jw)}

Consider now this curve G(jw) below:

To follow G(jw) when w varies from +c0 to —od; it may be necessary to
calculate additional points of (W as in this Nyquist Plot above
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The direction of the Nyquist Plot
Following G(jw) with only the points W = 0, 2 and 0 it is not possible
yet to determine the direction of the Nyquist Plot

Im{G(jw))

v
%
S

However, by calculating some additional poigts, we can then follow G(jw)

when W varies from +c0 to —oo and then give a direction to this Nyquist
Plot above
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The direction of the Nyquist Plot
By choosing a () between +c0 and +2 (such as W = 5) and another W

between +2 and 0 (such as W = 1) it becomes possible to follow G(jw) and
determine the direction of this Nyquist Plot

Im{G(jw)}

W= +5

Calculating G(jw) for W =5 and G(jw) for W ¥ 1 we can write down the
points G(j5) and G(j1) in the Nyquist Plot above
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The direction of the Nyquist Plot

Although it is not necessary, let us also write down 2 points in the
plot G(jw) below: W=-1e W= -5

Im{G(jw)}
W

il
+
N

In that way we can better
observe the property that the
Nyquist Plot is always

with respect to
the real axis
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The direction of the Nyquist Plot

Now we can put arrows that indicate the direction of this
Nyquist Plot G(jw)

Im{G(Gw)}
< OOI= o)
Y
//X/ OOI=—1 //Q
S S
/‘
0'=+1
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The direction of the Nyquist Plot

Im{G(jw))

With the direction of (G(jW) we can define the number of
encirclements of a point at real axis that the Nyquist Plot does
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The number of encirclements of the Nyquist Plot

The number of encirclements of G(jw) around a point at the real axis has
the signhal

Im{G(jw))

positive = if counter clockwise
negative = if clockwise

Re{G(w)}

" point A = N,=0

For example: The number of { point B=> Np = +2

encirclements of G(jw) I
around a point \ point C = N = +1
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Next, we present some Example of

Nyquist Plot
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Example 1: Consider the closed loop system below

thus,

and substituting s = jW), we obtain:

2
— + —
G(iw) K (W +38) : 2KW

(W +4) (W +16) J (W +4) (W +16)
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Example 1 (continued):

-K(w’ + -2K
G(jw) = K(w +8) L W

(W +4) (W +16) J (W +4) (W +16)

Intersection with the real axis (imaginary part = 0)
—20=0 = w=0 = G(jw =06H0)=-K/8

Intersection with the imaginary axis (real part = 0)

Aw real that makes null Re {G(jw)}, the real part of G(jL) =

‘ this Nyquist Plot does not intercept
the imaginary axis
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Example 1 (continued):

Gjwy =y 2 O

. —-2KW
J

(W +4) (W +16)

(W +4) (W +16)

Limits at infinite (G(jw) for W = £ o)

G(joo) = 0™ +jO°
(3° quadrant)

Gl—joe) = 07 + j0°

(2° quadrant)

and now we write down in the complex plane
these points of intersection and the [imits at infinite
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Example 1 (continued):

— F + . -2K
Gliw) = K (0 +8) N W

(W +4) (W +16) J (W +4) (W +16)

Im{G(Gw)}

Re {G(jw))

and then we draw a sketch of
the Nyquist Plot of G(jWw)
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Example 1 (continued):
-K(w +8) . - 2K w
(W +4) (W +16) ] (W +4) (W +16)

G(jw) =

Im{G(Gw)}

Re {G(jw)}
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Example 1 (continued):
-K(w +8) . - 2K w
(W +4) (W +16) ] (W +4) (W +16)

But it still missing to give a
direction for this “Nyquist Plot”
to become complete

Q
V4
i

—K/8 0

G(jw) =

Im{G(Gw)}

Re {G(jw)}
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Example 1 (continued):
-K(w +8) . - 2K w
(W +4) (W +16) ] (W +4) (W +16)

This direction is done by
following G(jw) when W

varies from 400 to —00 >

Q
V4
i

—K/8 0

G(jw) =

Im{G(Gw)}

Re {G(jw)}
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Example 2: cConsider the closed loop system bellow

B
(s=D)(s +4)(s +5)

thus,
K

Glsy St e g S
(s—D(s+4)(s+)5)

and substituting s = jW, we obtain:

G(jw) = -Bw +20)K Lo (W -1 wK

(W +1) (W +16)(w” +25) J (W +1) (W +16)(w” +25)
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Example 2 (continued):

G(jw) = -Bw +20)K L (W -1 wK

(W +1) (W +16)(W* +25) J (W +1) (W +16)(W* +25)

Intersection with real axis (imaginary part = 0)
w=0 = Gjw =G6GG0)= -K/20
Ww=11 = w==3317 = G(jw) =G(x£j3.317) = —-K/108

Intersection with imaginary axis (real part = 0)

Aw real that makes null Re {GGW)}, the real part of G(jJW) —
m) this Nyquist Plot does not intercept the imaginary axis
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Example 2 (continued):

G(jw) = -Bw +20)K L (W -1 wK

(W +1) (W +16)(W* +25) J (W +1) (W +16)(W* +25)

Limits at infinite (G(jw) for W = £ o)

G(oo) =0 + 307 G(—j0) =0 +30°
(2° quadrant) (3° quadrant)

and now we write down in the complex plane
these points of intersection (already calculated)
and the limits at infinite
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Example 2 (continued):

—(8002 +20)K L ((Jo2 —11)wK
(W +1) (W +16)(W* +25) J (W +1) (W +16)(W* +25)

G(Jw) =

_K/20 —K/108 0

and then we draw a sketch of
the Nyquist Plot of G(Jw)
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Example 2 (continued):

-(8w’ +20)K L (W -1 wK

GW=—F—— s N PN IV TN
(W +1) (W +16)(wW +25) (W +1) (W +16)(W +25)
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Example 2 (continued):

—(8002 +20)K L ((Jo2 —11)wK
(W +1) (W +16)(W* +25) J (W +1) (W +16)(W* +25)

Note that it has already put the arrows that
indicate the direction of this Nyquist Plot

>

G(Jw) =

Im {G(jw))

<

S B
—K/20
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Example 3: Consider the closed loop system bellow:

thus,

and substituting s = jW, we obtain:
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Example 3 (continued):

Intersection with real axis (imaginary part = 0)
Ww=0 = Gjw=G(G0)= -2K=-K/(?2)

Intersection with imaginary axis (real part = 0)
w=+1412 = Gw =+j1412°K
Ww=2 =

w=-1412 = G(jw) =-j1.412°'K
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Example 3 (continued):

Limits at infinite (G(jw) for W = £ ©)

G(joo) =K +j0*

G(—jo) =K + 30~

(1° quadrant)

(4° quadrant)

and now we write down in the complex plane

these points of intersection (already
calculated) and the (imits at infinite
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Example 3 (continued):

—K/(%) K, -7 ~ Re {G(jw)}

and then we draw a sketch of

the Nyquist Plot of G(jWw) w=-1.412
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Example 3 (continued):

Im {G(jw)}

w=1.412
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Example 3 (continued):

Note that it has already put the Im {G(jw)}
arrows that indicate the direction
of this Nvquist Plot <

—
Re {G(jw)}
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Having the Nyquist Plot of G(jw) we can apply
the ‘Nyquist Criterion’ to determine the
stability of the M.F. system
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Nyquist Criterion (for stability)

Closed loop system

Clearly, the OLTF (open loop transfer function) is given by:

G(s) = K G(s) H(s)
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Nyquist Criterion (for stability)

N_; = Pq -

Number of

encirclements do Number of Number of
Nyquist Plot open loop closed loop
around point -1 poles at poles at
RHP RHP

N_; = number of encirclements of G(jw) around point —1, which can be
‘positive’ (if direction is counter clockwise), or
‘negative’ (if direction is clockwise)
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Nyquist Criterion (for stability)
that is,

Pep =N, +

P~ =Number of closed loop poles at RHP

IN_; = Number of encirclements of the Nyquist Plot
around point -1

= Number of open loop poles at RHP

And, of course, the closed loop system will be if

Pyp =
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Application of Nyquist Criterion
to system from Example 1
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Example 1 (continued): Let us return to this problem
then,
Py =1
which Nyquist Plot was Im {G(jo)}

—KI8 0 Re {G(jo)}

By doing now an analysis to the number of encirclements
of the Nyquist Plot around point -1, we get




Frequency domain analysis

Example 1 (continued):

Im {G(jm)}

—KI8 0 Re {G(jo)}

Now, by applying
< the “Nvquist
Criterion” to

{ 0 se K <8 determine the
N, =

C.L. stability,
we get




Frequency domain analysis

Example 1 (continued):

Im {G(jm)}

—KI8 0 Re {G(jo)}

< hence,
the closed loop

0+1=1 se K<8§ system is stable
Pyg = for
" -1+1=0 se K>8 K> 8
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Application of Nyquist Criterion
to system from Example 2
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Example 2 (continued): Let us now return to this problem
K

(s—1)(s+4)(s +53) Pya =1

G(s) =

which Nyquist Plot was

By doing now an analysis to the number of encirclements
of the Nyquist Plot around point -1, we get




Frequency domain analysis

Example 2 (continued):

> K
g (s—1)(s +4)(s +5) P, =1

Re {G(jw)}

Now, by applying

< the “Nvquist
0 se K <20 Criterion” to
N_1 — —1 se 20 < K <108 determine the

C.L. stability,

1 se K> 108 we get
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Example 2 (continued):

> K
g (s—1)(s +4)(s +5) P, =1

hence,

< the closed
O+1=1 5C K <20 loop system is

PM.F. — -1+1=0 S€ 20< K <108 stable for
l+1=2  se K> 108 20 <K < 108
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Application of Nyquist Criterion
to system from Example 3
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Example 3 (continued): Finally, let us now return to this problem
then,
Im {G(jw)} PM-A- = O
which Nyquist Plot was <
ii 0 :K Re {G(j)m;}}
()

-

By doing now an analysis to the number of encirclements
of the Nyquist Plot around point -1, we get
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Example 3 (continued):

Im {G(jw)} PM-A- B O

X! 0 K Retoluy

Now, by applying
> -I the “Nvyquist

Criterion” to

determine the

N, =4 Y se K<OS C.L. stability,
| se K>0,5 we get




Frequency domain analysis

Example 3 (continued):

Im {G(jw)} PM-A- B O

X! 0 K Retoluy

> _I hence,

the closed loop
{ 0+0=0 se K <0,5 system is stable for

1+0=1 se K>0,5 K<0,5
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