Control Systems

11

"Root Locus”
part |

J. A. M. Felippe de Souza




Root Locus part |

Closed loop system
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Closed loop system

R(S) ‘

The “Root Locus” the locus of the poles of the closed

loop system, when we vary the value of K

We shall assume here K > 0, but it is also possible to construct
the “Root Locus” for K <0 or even for -0 < K < o0,
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“Root Locus” is actually the locus of the poles, that is, the
locus of the roots of the characteristic equation, of the closed

loop system

Complex . Almaginary
Jw :
plane axis
: >
0 real axis

Thus, the “Root Locus” is drawn in the complex plane

It is easy to observe that the “Root Locus” is SIMETRIC with
respect to the real axis

That is, the upper part is a reflex of the lower part
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As we know very well by now, the closed loop “transfer
function” (CLTF) of the system is given by

FT.e—od)

Tl G(s)H(s)

and the closed loop of this system are the roots of the
characteristic equation of the CLTF

It is easy to show that these roots of the characteristic
equation of the CLTF are the same roots of

1 + G(s)H(s) =0
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That is, we calculate the expression

1 + G(s)H(s) =0

and then calculate the roots of the numerator.

Those will be the roots of the characteristic equation of the

CLTF without having to calculate the CLTF

Actually, the characteristic equation of this CLTF is
precisely the numerator of

1 + G(s)H(s)
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Example 1: Let us calculate the characteristic equation of the
C.L. system below

Kl(2s+1)
(s—4)

Observe that:

1+ G(s)H(s) =
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Example 1 (continued)
hence,

s> +(2K -4)s+K
(s—4)s

1+ G(s)H(s) =

and therefore, the characteristic equation of the CLTF is given by:

s>+ (2K-4)s+K = 0

That could also be obtained (with a little more calculation)
through the denominator of the CLTF which is given by:

K@2s+1)s

FIMEF =

s”+(2K-4)s+K
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Example 2:  Let us construct the Root Locus of the C.L. system

Observe that:

1+ G(s)H(s) Kls=2)

(s+5)
(K+1)s + (5-2K)
(s+5)
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Example 2 (continued)

thus, the characteristic equation of the C.L. system is:

(K+1)s + (53—-2K) = 0

and the only C.L. pole is: . (2K - 5)

(K +1)
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Example 2 (continued)

Therefore, the Root Locus of this system is the [ocus of s

. = (2K —5)

(K +1)

in the complex plane, when K varies, for K > 0.
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Example 2 (continued)

Observe that:
if K=0 —— s = =3
if K — o0 —) S — +2

Hence, it is easy to observe that the Root Locus of this system
is the line segment in the real axis between -5 and +2, that is
[-5 ,+2].

imaginary
axis

_5 0 0 real axis




Root Locus part |

Example 2 (continued)

Actually, the line segment that goes from -5 to 2, when K
goes from O to 0.

and note that K =2.5 when s = 0.

K — o

imaginary
axis

+ >

_5 0 0 real axis
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Example 2 (continued)
Since this a 1%t order closed loop system,
the sole closed loop pole is real,
and therefore,
this Root Locus is entirely located in the real axis.

K—0 K=25

K — o

imaginary
axis

. | E— S

_5 0 0 real axis
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Example 2 (continued)
The Root Locus allows us to see that

for K <2.5 = the closed loop system is stable,

since in this case the only closed loop pole will lie in the LHP,
whereas

for K>2.5 = the closed loop system is not stable.

K—0 K=25

K — o

imaginary
axis

+ >

_5 0 0 real axis
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Example 3:  Let us construct the Root Locus of the C.L. system

Observe that:

1+ G(s)H(s)
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Example 3 (continued)

thus, the characteristic equation of the C.L. system is:

s +2s+(K-3) = 0

and the 2 poles are:
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Example 3 (continued)

So, the Root Locus of this system is the locus of s

s = —-1++4—-K

in the complex plane, when K varies, and for K > 0.
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Example 3 (continued)
Note that:

if K=0 —) s=-3 e s=1

imaginary axis

A | >
_3 §) 1 real axis
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Example 3 (continued)

moreover:
if K <4 — (= —1im real poles
if K=4 e—) e  double real poles
imaginary axis
K=0 K=4 K=0
\ A

_3 _1 0 1 real axis
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Example 3 (continued)

and also:

- the Root Locus
if K=3 e NI

crosses the origin

imaginary axis

_3 _1 §) 1 real axis
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Example 3 (continued)
But this Root Locus is not restrict to the real axis, since

: _ : complex
= -1+ —
if K>4 e B 1+ j4/K -4 conjugates
with real part = -1
K — oo A and the imaginary

imaginary axis

part varying from 0

real axis
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Example 3 (continued) and now let us present
Summarizing, ... the 2 branche; of .this
Root Locus with different
colours, as the Matlab

does...

This Root Locus has 2 branches

K — o

imaginary axis

real axis
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Example 3 (continued) and now let us present
the 2 branches of this
Root Locus with different
colours, as the Matlab
does...

imaginary axis

real axis
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Example 3 (continued)
The Root Locus allows us toseethat K <3 —

—> the closed loop system is not stable,

Whereas for K > 3 —> the closed loop system is stable,
since in that case the 2 closed loop poles will lie in the LHP
K — o

imaginary axis

real axis
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Note that the “Root Locus” depends only on the product
G(s)H(s) and not on G(s) or on H(s) separately

Hence, if the 2 closed loop systems below

satisfy

G, (s)H,(s) = G,(s)H,(s)

Then the “Root Locus” of these 2 systems are the same
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The expression
G(s)LH(s)

Is called the transfer function of the system in open loop
(OLTF).

G(s)H(s)
(FTMA)

t is as if the

oop had ®
been broken
here,

becoming
open




Root Locus part |

Therefore, the poles and zeroes of

G(s)H(s)

are called the open loop poles and zeroes

Let us call by n and m the number of poles and zeroes
of G(s)[H(s), respectively

that is:

n = the number of open loop poles

m = the number of open loop zeroes
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Rules for the construction of the
“Root Locus”

We shall present here 8 rules that will be very helpful to
draw the “Root Locus” for a close loop system with OLTF

given by G(s)H(s).
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Rule #1

Number of branches
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Rule #1 - Number of branches

The number of branches n of a “Root Locus” is the
number of open loop poles, that is, the number of poles

of G(s)H(s).

n = n° branches = n° poles of G(s)H(s)




Root Locus part |

Rule #2

Intervals with and without “Root Locus” in the real axis
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Rule #2 - Intervals with and without “Root Locus” in the real axis

A point s in the real axis belongs to the “Root Locus” if
there is an odd number of open loop poles and zeroes to

the right of s

that is, if there is an odd number of poles and zeroes of
G(s)H(s) to the right of s.
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Example 4:  Application of Rule #2 —
Intervals with and without “Root Locus” in the real axis

_é

real axis

real axis
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Example 4 (continued) Application of Rule #2

E— 3 _'_---é

10 real axis

0 real axis
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Example 5:  Application of Rule #2 —
Intervals with and without “Root Locus” in the real axis

A
Considere o sistema de M.F. no qual
K
G(s)H(s) = ———————
(s+D(s+2)(s+3)
-3 —2 —1 0) real axis
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Rule #3

Beginning and ending points of the branches
of the “Root Locus”
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Rule #3 - Beginning and ending points of the branches of the
“Root Locus”

The n branches of the “Root Locus” start in the

n open loop poles
that is, they start in the n poles of G(s)HI(s)

m of the n branches of the “Root Locus” end in the m
open loop zeroes

that is, they end in the m zeroes of G(s)H(s)

and the remainders:
(n — m) branches of the “Root Locus” end in infinite (o)
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Rule #3 - Beginning and ending points of the branches of the
“Root Locus”

Summarizing:

" n branches _ start at the n open loop poles

< m branches - end at the m open loop zeros

: (n — m) branches — end at infinity (o)
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Rule #3 - Beginning and ending points of the branches of the
“Root Locus” (continued)

Note that (n — m) is the difference between the number of
open loop poles n and the number of open loop zeroes m

i.e., the difference between the number of poles and zeroes
of G(s)H(s)

If n = m then (n —m) = 0, and therefore no branch ends in
infinite (o)

Hence, if the number of open loop poles is equal to the
number of open loop zeroes, then no branch ends in
infinite (o0)
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Rule #4

Asymptotes in the infinite
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Rule #4 - Asymptotes in the infinite

For the (n — m) branches of the “Root Locus” that do not
end in the m open loop zeroes, that is, the m finite zeroes
of G(s)H(s), we can determine the direction which they
are going to infinite in the complex plane

Y = angle of the asymptote with the real axis

~ 180°(2i +1)

Y

(n —m)
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Rule #4 - Asymptotes in the infinite (continued)

Applying the formula we obtain the table below:

n—m |V = angle of the asymptote with the real axis

180°

90° and —90°

60°, —60° and 180°

45°, -45°, 135° and —135°

36° -36°, 108° —108° and 180°
30°, =30°, 90°, -90°, 150° and —150°

O\ Ut B W N =
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Rule #5

Interception points of the asymptotes with the real axis
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Rule #5 - Interception points of the asymptotes with the
real axis

The (n — m) asymptotes in the infinite are well
determined by its directions (angles y) and by the

point where they meet in the real axis, 0, given by the
expression:
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Rule #6

Points in the real axis where there are branch encounters
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Rule #6 — Points in the real axis where there are branch
encounters

Firstly we write the equation
1 + G(s)H(s) =0,
and then we obtain an expression for K as a function of s:
K(s)

thus, we calculate the derivative of K with respect to s, dK/ds

Now, using the equation below which depends on s
dK

0

ds
We obtain the points s in the real axis where there are
meetings of branches
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Rule #6 — Points in the real axis where there are branch
encounters (continued)

This equation in s

dK _,

ds

May have a number of solutions

S=S§, S=S8, S=8; S=S;  S=S: .........

which are greater than the number of points
where branches meet in the real axis

It will be necessary to cancel solutions that are not points
belonging to the “Root Locus”
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Rule #6 — Points in the real axis where there are branch
encounters (continued)

O
7

real axis

When there are branches encounter in the real axis, it may
be branches that meet and ENTER the real axis or branches
that meet and LEAVE the real axis
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Rule #6 — Points in the real axis where there are branch
encounters (continued)

For a point

%

S=S

where there are branch encounters in the real axis,

we calculate the second derivative of K(s)ats =1’
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Rule #6 — Points in the real axis where there are branch
encounters (continued)

real axis

—> 2 branches that meet and LEAVE the real axis
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Rule #6 — Points in the real axis where there are branch
encounters (continued)

real axis

—> 2 branches that meet and ENTER the real axis
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Rule #6 — Points in the real axis where there are branch
encounters (continued)

real axis

—> more than 2 branches that meet in this point
—> we follow to Rule #7 — Encounter of more than two branches
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Example 6: Application of Rule #6 -
Points in the real axis where there are branch encounters

Returning to Example 1, let K[(2s+1)
1+ G(s)H(s) = - (s —4)

N K[L(2s+1)
(s—4)s

= 1

then we have:

and therefore:

thus, s=1 and s =-2 are the points where there are
branches meeting
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Example 6 (continued) Application of Rule #6

In order to know the value of K in each of these points

It is necessary to substitute (s =1 e s =-2)in the expression
of K

Thus, the points where there
are encounter of branches are

s=1 (K=1) and
s==2 (K=4)
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Example 6 (continued) Application of Rule #6

the points where there are meting of branches are
s=1 (K=1) and
s=-2 (K=4)

>
S”= _2 O S’: 1 real axis
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Example 6 (continued) Application of Rule #6

Now, in order to find if each of these branch encounters
are ENTERING branches or LEAVING branches, it is necessary
to calculate the second derivative

substituting by the points where branches meet:
s=1 and s = -2

< 0 ‘ branches that LEAVE
the real axis

‘ branches that ENTER
the real axis
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Example 6 (continued) Application of Rule #6

Thus, the points where there are branches meeting are:

s =1 (K =1) branches that LEAVE the real axis

)
s =—2 (K =4) branches that ENTER the real axis

>
real axis
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Example 7: Application of Rule #6 -
Points in the real axis where there are branches meeting

Returning to Example 5

G(s)H(s) =

B S
(s+1D)(s+2)(s+3)

hence

1+G(s)H(s) =1+ s =0

(s+D)(s+2)(s+3)
—(s+D)(s+2)(s+3)
-5’ —6s°—-11s—6

—) i—K = —3s*-12s-11
S
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Example 7 (continued) Application of Rule #6
thus, setting

dK
™ =0 MW -35°-12s-11 =0

— [ > ,

We conclude that

s=-1.423 only one of the
\ solutions,
A s=-1.423
now, observing the intervals with and without lies in a interval

“Root Locus” in the real axis (example 5) with “Root Locus”
.

-3 -2 — 1 0 real axis
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Rule #7

Encounter of more than two branches
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Rule #7 - Encounter of more than two branches

When applying the previous rule, if

this means that there are encounter of more than two branches
and we have to keep on the differentiation on K(s), to higher

order derivatives
k=3,4,5,-

until we get

for some 1
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Rule #7 - Encounter of more than two branches (continued)

this means that there is an encounter of 1 branches at s’
that is, ) branches ENTER and 1 branches LEAVE at s’

The meeting of 3 branches or more it is not much common

Certainly occurs with less frequency than the meeting of 2
branches (Rule #6)

Thus, this Rule #7 is not always used. Only in those cases
where, by applying Rule #6, we find
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Rule #7 - Encounter of more than two branches (continued)

A meeting of 3 branches at s’ can have the following aspect

3 ENTERING branches

and 3 LEAVING branches
at s’

real axis
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Rule #7 - Encounter of more than two branches (continued)

A meeting of 4 branches at s’ can have the following aspect

4 ENTERING branches

and 4 LEAVING branches
at s’

. real axis
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Example 8: Application of Rule #7 -
Encounter of more than two branches

G(s)H(s) = K

(s —1)

1+ GOHC) = 0 R

dK
— 12—382:0 —) s =0

d°K
ds?

= 63‘5:0 ] — apply Rule #7

(starting with the
3 order derivative)

s=0
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Example 8 (continued) Application of Rule #7

d’K

e SN wmmm) 11ccting of 3 branchesat s’ =0
S

A

s=0
K =m0
3 branches ENTER

and 3 branches LEAVE
at s’'=0 0.5+ 0866]
K =(*
K =w P /= 1 K=0

This example only illustrate S0 1 real axis

the application of Rule #7 K=0 7"
To sketch the complete —0.5 - 0.866)
“Root Locus” it is hecessary

to apply all the rules K=w




UNIVERSIDADE
BEIRA INTERIOR

U})

Departamento de

Engenharia Eletromecanica

Obrigado!
Thank you!

Felippe de Souza
felippe@ubi.pt




