Control Systems

"State Equations" (part II)

9

J. A. M. Felippe de Souza

Recollecting (from part I),

the state equations have the form (systems of nth order)

$$x = Ax + Bu$$
$$y = Cx + Du$$

where:

A is a *n* x *n* matrix
B is a *n* x *p* matrix
C is a *q* x *n* matrix
D is a *q* x *p* matrix

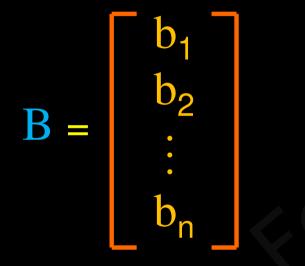
with:

- *p* = number of inputs
- *q* = number of outputs

x = derivative of vector **x**



For the case of *systems* with only one *input* u(t), i.e., p = 1, we have that:



that is, in this case **B** is a *column vector*.

For the case of *systems* with only one output y(t), i.e., q = 1, we have that:

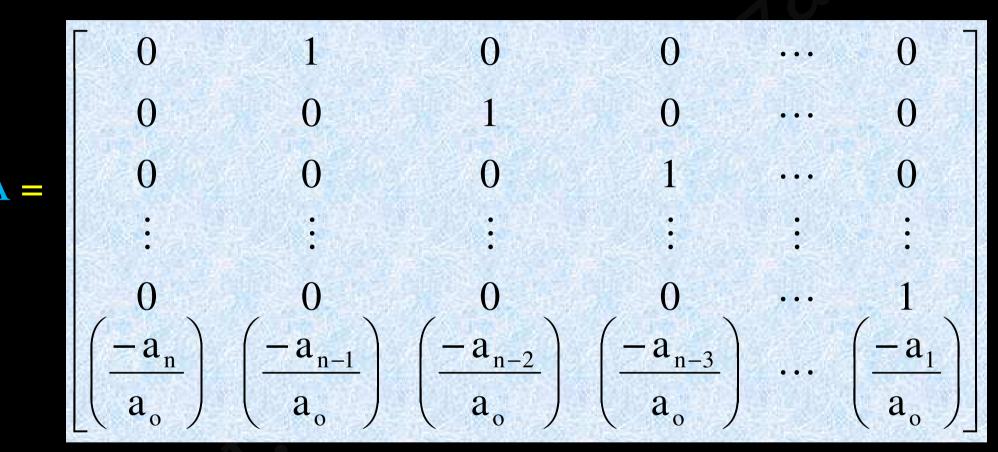
 $\mathbf{C} = [\mathbf{c}_1 \quad \mathbf{c}_2 \quad \dots \quad \mathbf{c}_n]$

C is a *row vector*.

For the case of systems with only one *input* u(t) and one *output* y(t),

 $D = [d_1]$ $D \text{ is a constant } d_1 \text{ (that is,}$ D is a 1x1 matrix).

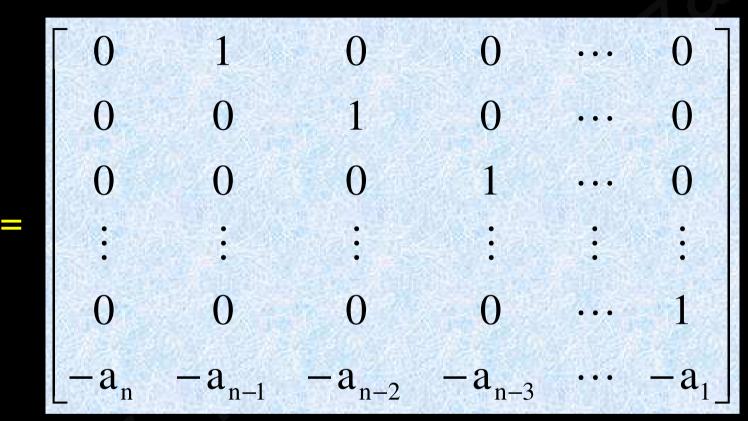
A matrix A in the "companion form" has the following aspect:



where, a_0 , a_1 , ..., a_{n-1} , a_n , are the *coefficients* of the *characteristic equation* p(s):

$$p(s) = a_0 s^n + a_1 s^{n-1} + a_2 s^{n-2} + \dots + a_{n-1} s + a_n$$

In the particular case, but very common, of $a_0 = 1$, matrix A in the "companion form" has the following aspect:



where, a_1 , ..., a_{n-1} , a_n , are the *coefficients* of the *characteristic equation* p(s):

$$p(s) = s^{n} + a_{1}s^{n-1} + a_{2}s^{n-2} + \dots + a_{n-1}s + a_{n}$$

The characteristic equation and the poles of the system

A system described in the form of *state equations*

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$
$$\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$$

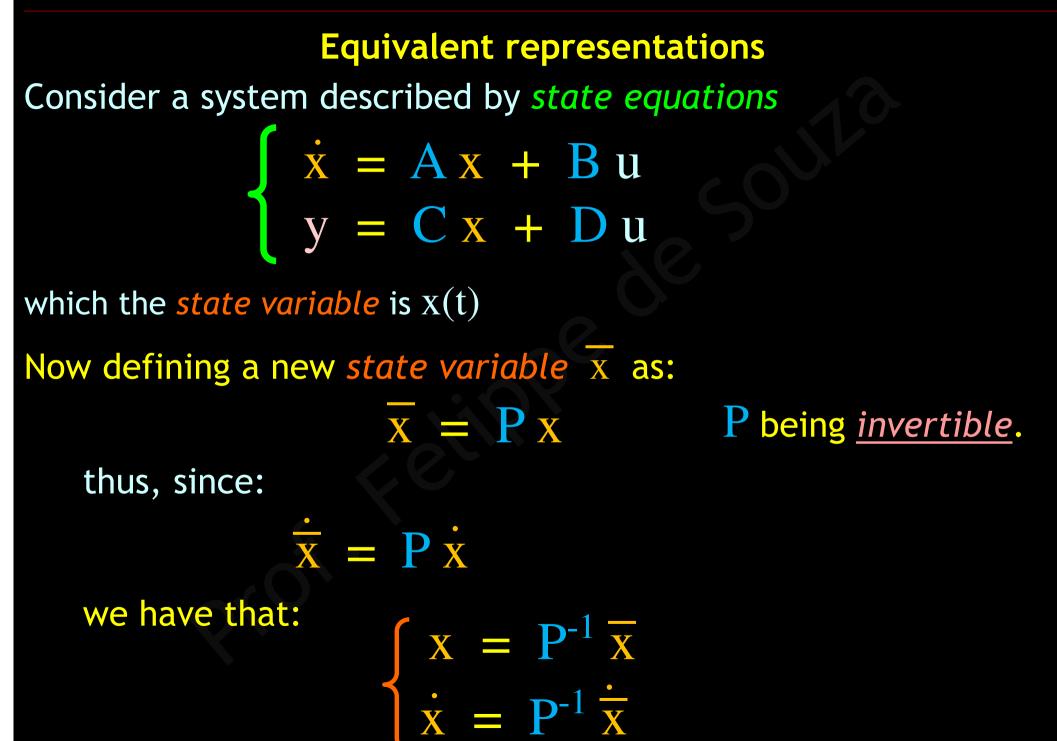
has its characteristic polynomial given by:

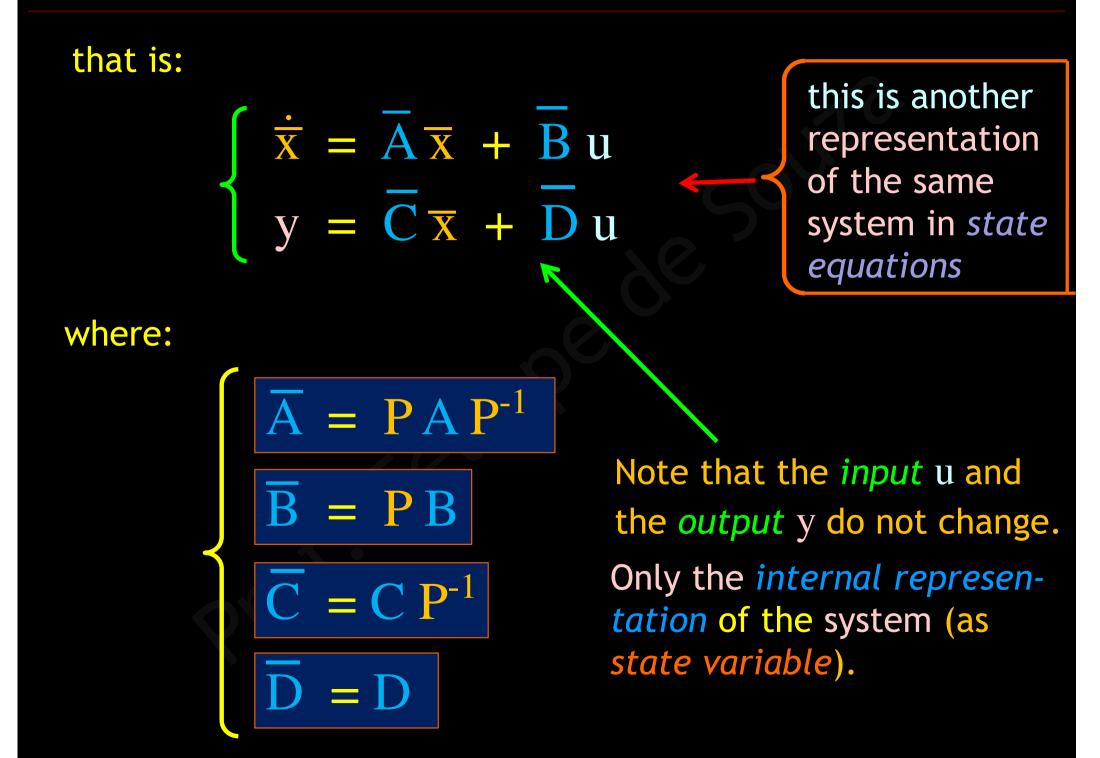
$$p(s) = det \{[sI - A]\}$$

The *poles* of the system are the "*eigenvalues*" of A, which can be *repeated*, i.e., *double*, *triple*, etc.

It is well known that the eigenvalues of A are the roots of the characteristic polynomial

 $p(s) = det [s \cdot I - A]$





Conversion from the State Equation to Transfer Function

In order to convert the representation of a system in *state equations*

 $\begin{aligned} \dot{\mathbf{x}} &= \mathbf{A} \mathbf{x} + \mathbf{B} \mathbf{u} \\ \mathbf{y} &= \mathbf{C} \mathbf{x} + \mathbf{D} \mathbf{u} \end{aligned}$

to *transfer function*, the expression is given by,

 $\frac{\mathbf{Y}(\mathbf{s})}{\mathbf{U}(\mathbf{s})} = \mathbf{C} \cdot (\mathbf{s}\mathbf{I} - \mathbf{A})^{-1} \cdot \mathbf{B} + \mathbf{D}$

analog simulation

Analog Simulation

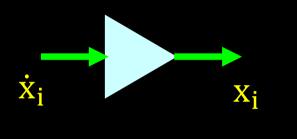
No matter what is the nature of a *linear time invariant* (LTI) system (mechanical, electrical, electromechanical, thermic, hydraulic, or a chemical process, etc.) it can be simulated in laboratory by using electronic components.

In that way it is **possible** to **simulate** the *input* of any *system*, such as for example a step function, and to observe what it would be the *output* of the *system* for that *input*.

That is called "analog simulation".

Components with which we do the *analog simulation*

INTEGRATOR



transforms an input signal \dot{x}_i in x_i in its output, that is, it integrates

The *analog simulation* of a *n* order *system* needs *n* integrators.

ADDING ELEMENT



sums the input signals giving an output signal

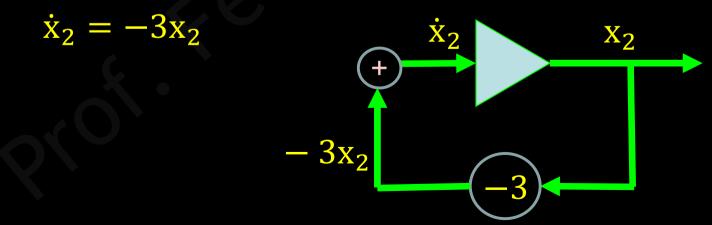
MULTIPLIER



multiplies the *input* signal x_i by k, giving back kx_i in its *output*

Example 16:

In the figure below we can see how it is done the *analog simulation* of the *differential equation*



Example 17:

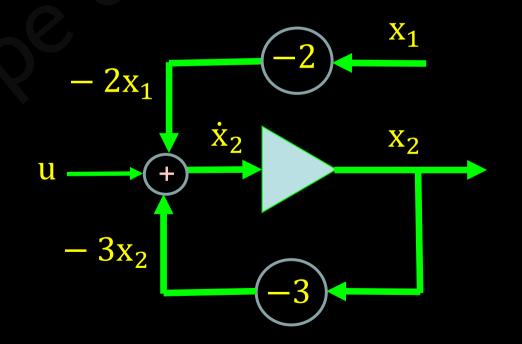
Now the *analog simulation* of the *differential equation*

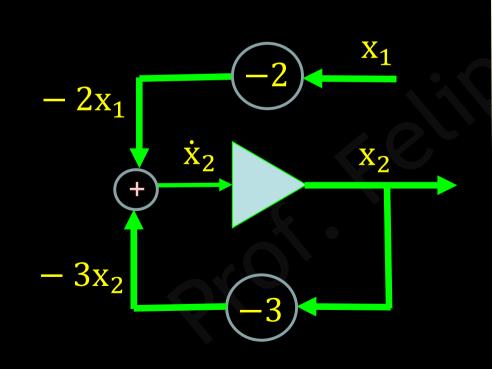
 $\dot{\mathbf{x}}_2 = -2\mathbf{x}_1 - 3\mathbf{x}_2$

Example 18:

And now the *analog simulation* of the *differential equation*

$$\dot{x}_2 = -2x_1 - 3x_2 + u$$

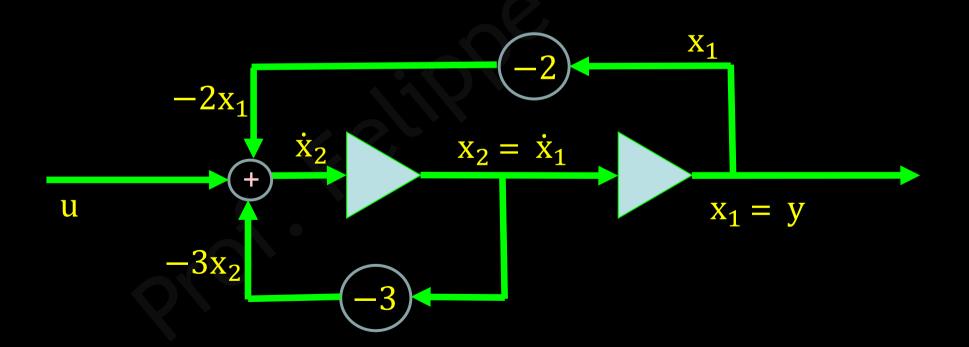




Example 19:

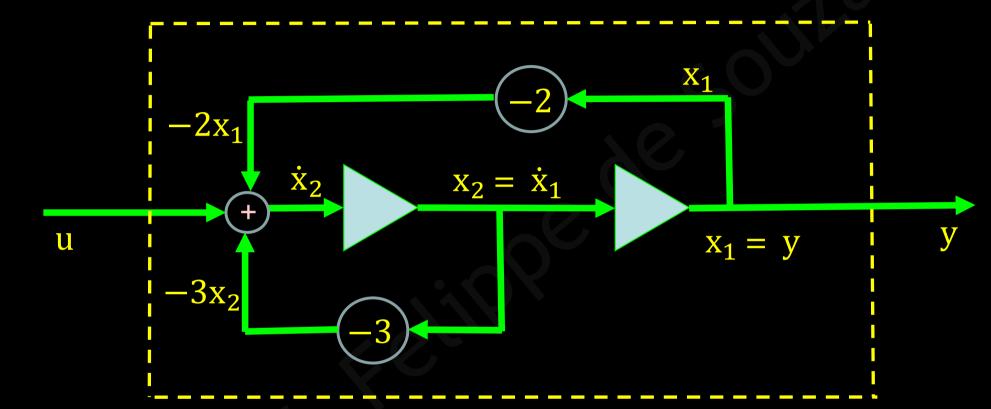
$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -2x_1 - 3x_2 + u \\ y = x_1 \end{cases}$$

Let us now do the *analog simulation* of this 2nd order *system* (described by its *state equations*)



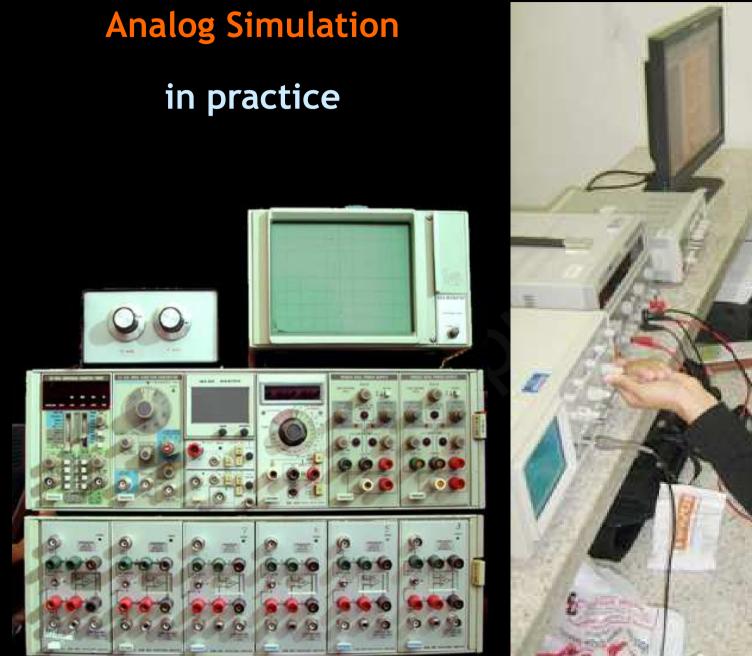
Example 19 (continued):

Now, if we draw a box covering the *analog simulation* done



we can observe that in this box only the *input* **u** comes in and only the *output* **y** comes out.

The variables x_1 and x_2 which stayed inside the box are part of an internal representation of the *system*, though its *state variable*



conversion of the transfer function to state equations

Conversion of the Transfer Function to State Equations

We have seen the representation of a system by its *transfer function*

 $\frac{Y(s)}{U(s)}$ is unique!

On the other hand the representation of a system in *state* equations

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$$
 It is not unique!

There is no single rule to transform systems described by its *ordinary differential equation* (ODE) or by its *transfer function*, in *state equations*

Let us see the same *third order* <u>system A</u>, described by the *differential equation*

 $\ddot{y} + 12\ddot{y} + 20\dot{y} = 80u$

which its *transfer function* is given by

 $G(s) = \frac{Y(s)}{U(s)} = \frac{80}{s^3 + 12s^2 + 20s}$ or $G(s) = \frac{Y(s)}{U(s)} = \frac{80}{s(s+2)(s+10)}$

Example 20:

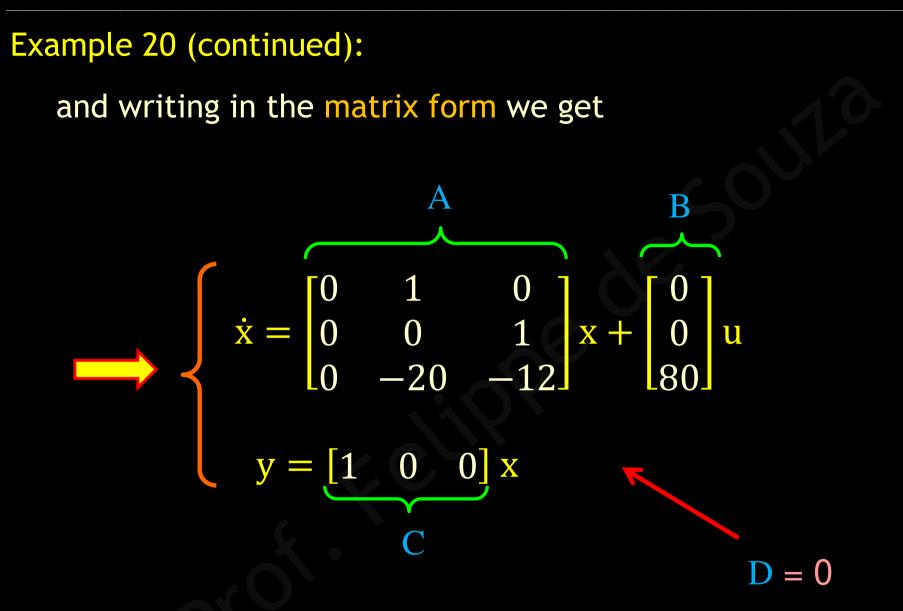
For system A described by the ordinary differential equation (ODE) is given by (1) $\ddot{y} + 12\ddot{y} + 20\dot{y} = 80u$

Defining the state variable

$$\begin{cases} x_1 = y \\ x_2 = \dot{y} \\ x_3 = \ddot{y} \end{cases}$$

we get the state equations

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = x_3 \\ \dot{x}_3 = -20x_2 - 12x_3 + 80u \\ y = x_1 \end{cases}$$



Note that matrix A is in the companion form

Example 21:

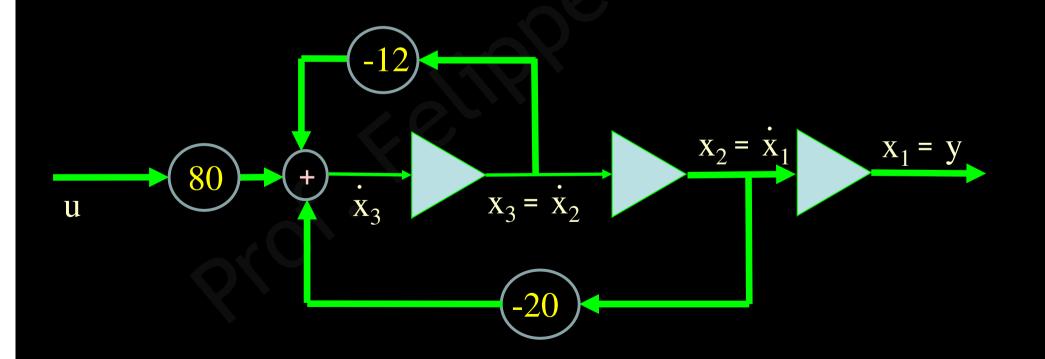
Let us now do a *analog simulation* of this <u>system A</u> using the *state equation* obtained in the previous example

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = x_3$$

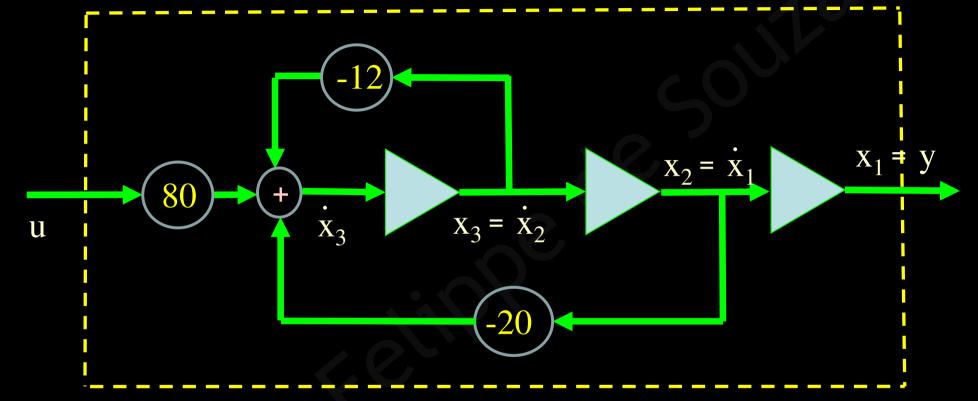
$$\dot{x}_3 = -20x_2 - 12x_3 + 80u$$

$$y = x_1$$



Example 20 (continued):

Now, by drawing a box covering the *analog simulation* done

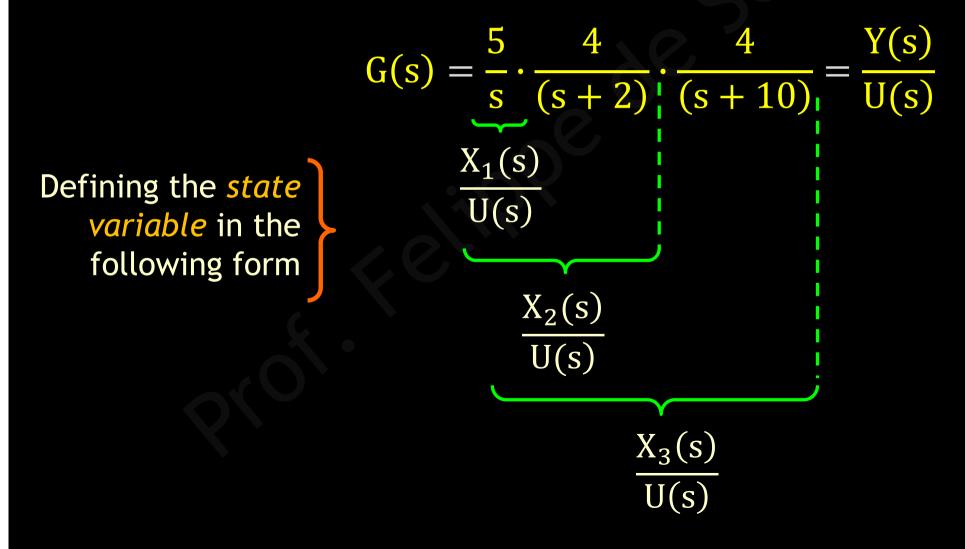


we can observe that in this **box** only the *input* **u** comes in and only the *output* **y** comes out.

The variables x_1 and x_2 which stayed inside the box are part of an *internal representation* of the system, though its state variable

Example 22:

Let us consider again the same <u>system A</u> of the previous example. However, here we are going to rewrite the *transfer function* G(s) given by (2) in the following form:



Example 22 (continued):

$$X_1(s) = \frac{5 U(s)}{s}$$
$$X_2(s) = \frac{20 U(s)}{s(s+2)}$$

 $X_{3}(s) = G(s). U(S) = Y(s) = \frac{80 U(s)}{s(s+2)(s+10)}$ $SX_{1}(s) = 5U(s)$ $(s+2) X_{2}(s) = 4. \frac{5 U(s)}{s} = 4. X_{1}(s)$ $(s+10) X_{3}(s) = 4. \frac{20 U(s)}{s(s+2)} = 4. X_{2}(s)$

Example 22 (continued):

$$\dot{x}_{1} = 5u$$

$$\dot{x}_{2} = 4x_{1} - 2x_{2}$$

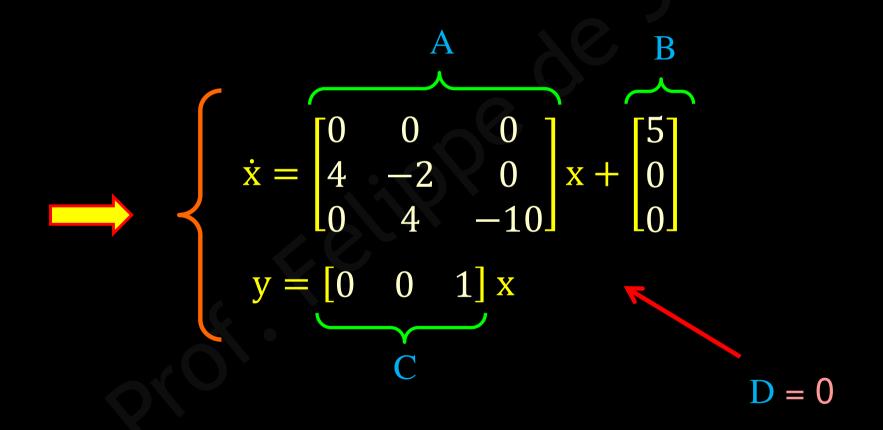
$$\dot{x}_{3} = 4x_{2} - 10x_{3}$$

$$y = x_{3}$$

Which give us a second *formulation* in *state equations* for this <u>system A</u>, different from the *formulation* of the previous example

Example 22 (continued):

by writing in the matrix form we have



 \dot{x}_2

 X_2

Example 23:

 \dot{x}_1

5

U

Let us now do a *analog simulation* of this <u>system A</u> using the *state equation* obtained in the previous example

 X_1

 $\dot{x}_1 = 5u$ $\dot{x}_2 = 4x_1 - 2x_2$ $\dot{x}_3 = 4x_2 - 10x_3$ $y = x_3$

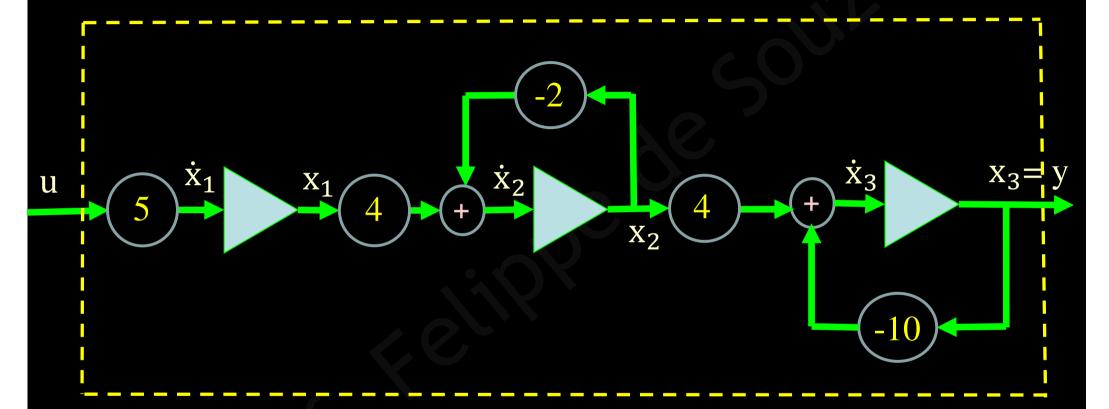
Х_З

-10

 $x_3 = y$

Example 23 (continued):

Again, by drawing a box covering the *analog simulation* done



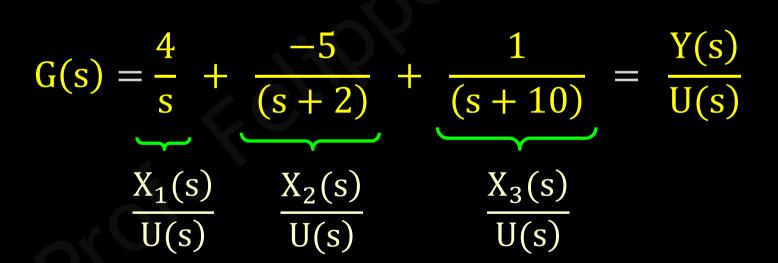
then we can observe that in this **box** only the *input* **u** comes in and only the *output* **y** comes out.

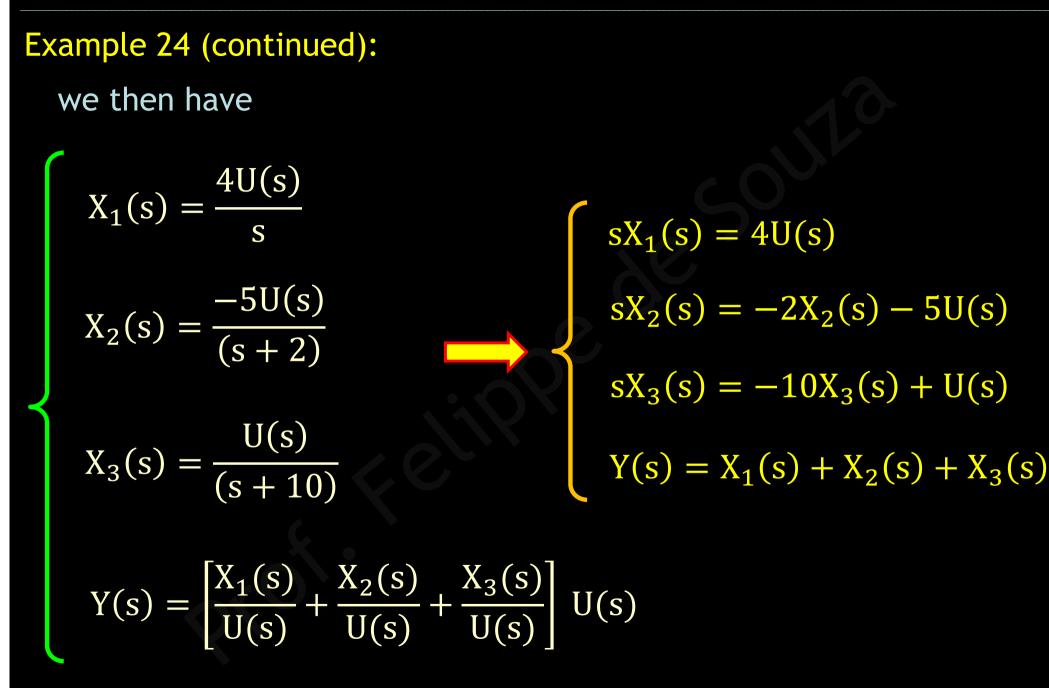
The variables x_1 and x_2 which stayed inside the box are part of an *internal representation* of the system, though its state variable

Example 24:

Let us consider again the same system A of the 2 previous examples

However, here we are going to rewrite the *transfer function* G(s) given in (3) by expanding in *partial fractions* and defining the *state variables* $X_1(s)$, $X_2(s)$ and $X_3(s)$ of the form shown below:



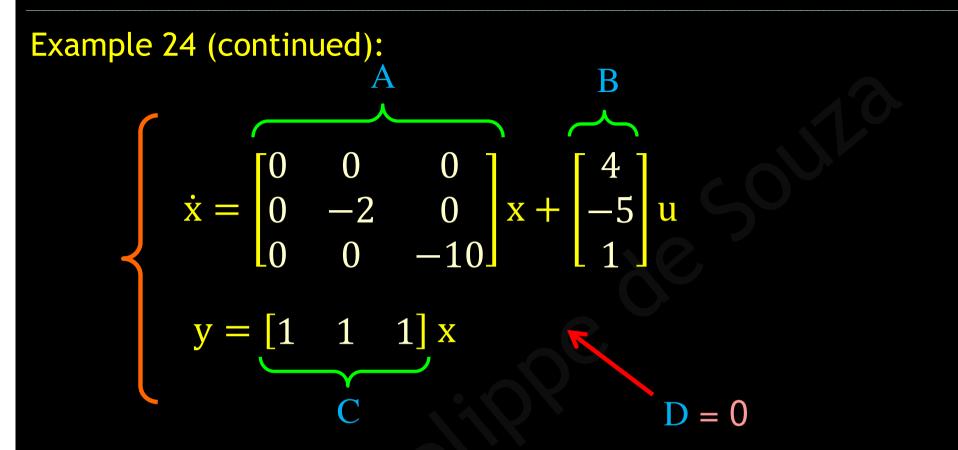


Example 24 (continued):

ſ	$\dot{x}_1 = 4u$
	$\dot{x}_2 = -2x_2 - 5u$
	$\dot{\mathbf{x}}_3 = -10\mathbf{x}_3 + \mathbf{u}$
	$y = x_1 + x_2 + x_3$

So, we have got a third representation in *state equations* for this same <u>system A</u>, different the previous ones.

Writing in matrix form



Note that *matrix* A is in the diagonal form in this *representation* and the *poles* of the system (s = 0, s = -2 and s = -10) are the elements of the *main diagonal*

It is obvious that this happens: since *matrix* A is diagonal, then the *elements* of its *main diagonal* are the own *eigenvalues* of the system.

 X_1

 X_2

 X_3

+

Example 25:

U

Let us now do a *analog simulation* of this <u>system A</u> using the *state equation* obtained in the previous example

4

-5

 \dot{x}_1

ż₃

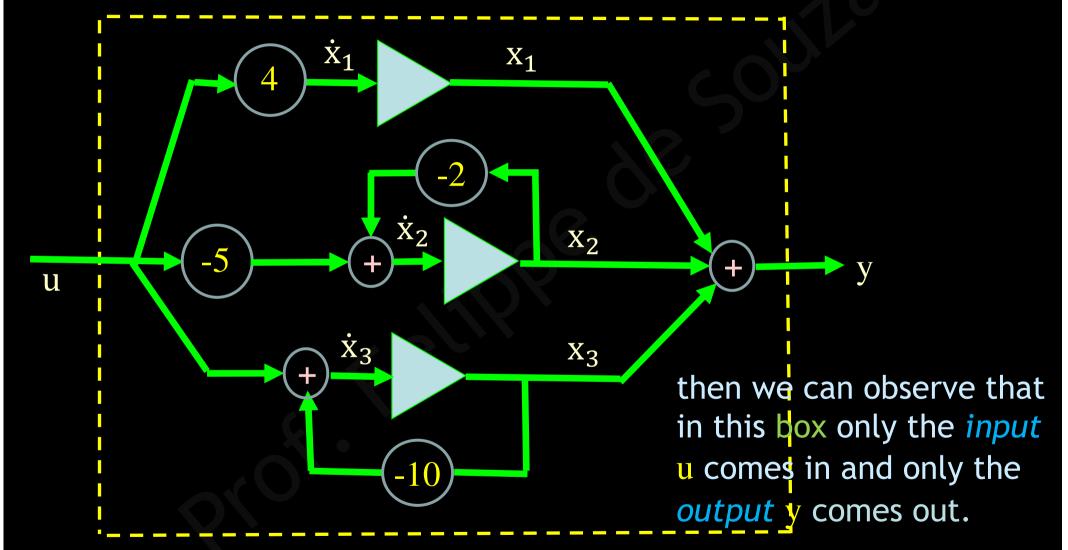
 \dot{x}_2

-10

 $\dot{x}_1 = 4u$ $\dot{x}_2 = -2x_2 - 5u$ $\dot{x}_3 = -10x_3 + u$ $y = x_1 + x_2 + x_3$

Example 25 (continued):

Once again, by drawing a box covering the *analog simulation* done



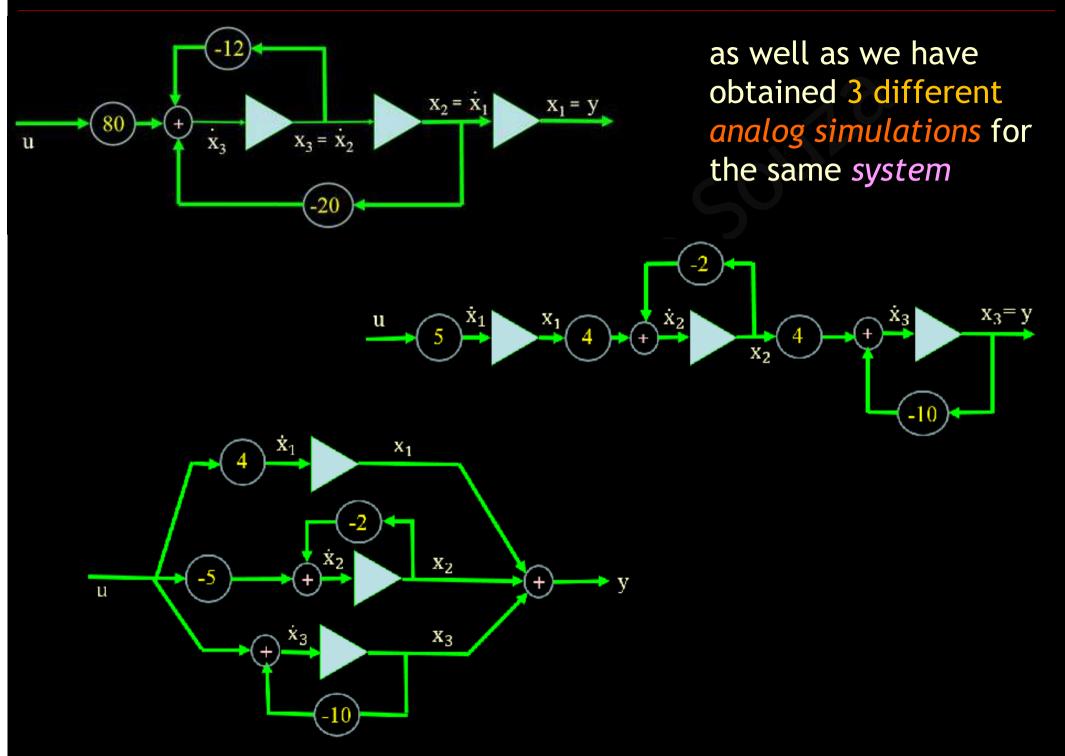
The variables x_1 and x_2 which stayed inside the box are part of an *internal* representation of the system, though its state variable.

In the previous examples we have obtained 3 different *representations* in *state equations* for the same *system*

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = x_3 \\ \dot{x}_3 = -20x_2 - 12x_3 + 80u \\ y = x_1 \end{cases}$$

$$\dot{x}_1 = 4u$$
$$\dot{x}_2 = -2x_2 - 5u$$
$$\dot{x}_3 = -10x_3 + u$$
$$y = x_1 + x_2 + x_3$$

 $\dot{x}_1 = 5u$ $\dot{x}_2 = 4x_1 - 2x_2$ $\dot{x}_3 = 4x_2 - 10x_3$ $y = x_3$



As we have already seen in the sections "Equivalent representations", the representation of a system in state equations It is not unique!

If the *state variable* is x(t), then for every *invertible* matrix P, we can get a new *state variable*

$$\overline{\mathbf{x}}(t) = \mathbf{P} \mathbf{x}(t)$$

and thus, a new representation of the system in state equations

$$\dot{\overline{x}} = \overline{A} \overline{x} + \overline{B} u$$
$$y = \overline{C} \overline{x} + \overline{D} u$$

Departamento de Engenharia Eletromecânica

Thank you! Obrigado!

Felippe de Souza <u>felippe@ubi.pt</u>