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State Equations

We have seen in chapter 4 (“Systems Representation”) a form of
representing linear and time invariant (LT/) systems using transfer
functions that relates directly the input with the output.

Here we will see another form of representing systems by
using internal variables (state variable).

With the state variables we can build a system of 15t order
differential equations that are called “state equations”.




State Equations

The representation of a system in state equations
considers internal variables (state variables)

X1
X2 /\

X = - ‘'state variable”

called the “state”.

Normally a “state vector” x has n components, where n
is the order of the system

The dimension of the state vector x can eventually be greater than the
order of the system, but in this case there will be redundant equations.




State Equations

For linear time invariant (LTI) systems of n'
order, the state equations have the form:

r

Ax 4+ Bu
Cx + Du

X

y

where:
with:

p = number of inputs
g = number of outputs

A is an x n matrix
B is an x p matrix

C is a g x n matrix
1D is a g x p matrix x—= derivative of vector x




State Equations

x= the derivative of vector x

Cxq(1) X (1)
Xo(t) Xo(t)
X(t) = | X(t) = ]
Xp-1(t) Xn-1(1)
RAVE - Xp(t)




State Equations

For the case of systems with
only one input u(t), i.e.,
p =1, we have that:

that is, in this case
B is a column vector.

For the case of systems with
only one output y(t), i.e.,
g = 1, we have that:

C=[cy ¢ ... ¢, ]

C is a row vector.

For the case of systems with
only one input u(t) and one

output y(t),

D=[d, ]

D is a constant d, (that is,
D is a 1x] matrix).




State Equations

Example 1:
System cart-mass-spring

applied force

u(t)

\ — |
il /{ -";/ﬁ" ffffff%" .--"/F/Afff 5, ;“:’f f"y/

Ltfiisplacement
xﬁ)

The ordinary differential equation (ODE) that describes
this system, as seen in chapter 3 (“System Modelling”) is

given by:
my" +Hy +ky =u




State Equations

Example 1 (continued):

applied force

Defining the state variable
u(t)

M S S S S S S S S S S

\Lc&splacement

x(t)

where:
X(t) = y(t) = position of the cart at instant t
X,(t) = y’'(t) = velocity of the cart at instant t

represents the
internal state of
the system.




State Equations

Example 1 (continued): N
for example, _ applied force

u(t)

M S S S S S S S S S S

\Lc&splacement

x(t)

This means that in the instant of time t =0
the “state” of the system: the cart is passing by the origin
(that is, x,(0) =0)

with velocity - 3m/s,
(that is, 3m/s ,x,(0)=-3).




State Equations

Example 1 (continued):




State Equations

Example 1 (continued):
therefore:

which is the representation of the
system in state equations.

Note that in this case D = 0.
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Example 2:
System cart-mass-spring of previous example with

f

1
4
3

A
~ = B
|

Y,

applied force
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T m=twg |
k=3 N/m
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b ¢ =4 N-s/m
Y77

Lﬂsplacement

x(t)
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Example 2 (continued):
thus:

and hence:
£ 0 1 . 0
e = ll| |

}

D=[0]




State Equations

Example 3:
Consider the system described by:

yl” + 4 y" + 5 yl — 3u

which the transfer function is given by:




State Equations

Example 3 (continued):

Defining the

. 3U(s)
e R lal Il | X (S) = Y(s) = — >
S” +4s” +5s

X,(s) = slX(s)

SX2(S) ~ 82 DY(S)

5 LX,(8) = X,(8)




State Equations

Example 3 (continued):

K (s) = X,(8)
X,(s) = X;(s)

[ sIX, (s) = X,(s)
sLX,(s) = X,(s)
s[X,(s) + SLX,(s) + 4[X,(s) = 3LU(s)

Y(s) = X,(s)



State Equations

Example 3 (continued):
sLX,(s) = X,(s)

sLX,(s) = X;(s)
sLX,(s) = =5[K,(s) — 4LK,(s) + 3LU(s)
Y(s) = X (s)




State Equations

Example 3 (continued):
and hence:

D=[0]

This matrix A is said to be in the “companion form”

that is because:
» the elements above the main diagonal are = 1;

» the last row contains the characteristic equation coefficients
in the inverse order and with opposite signals;

» all other elements of the matrix are = 0.
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In the general, matrix A in the “companion form” has the
following aspect:

J

where a_, a,, ... ,a,;and a, are the coefficients of the
characteristic equation p(s):

p(s) = as" + a;s"™! + a,;s"? + ... + a s + a,

Note that matrices A of the 2 previous examples are also
in the “companion form”.




State Equations

In the particular case, but very common, of a_ = 1, matrix A in the
“companion form” has the following aspect:

where a,,...,a, ,and a_ A are the coefficients of the
characteristic equation p(s):

p(s) = s" + a;s"! + a;s"? + ... + a_ ;S + a,




Equacdes de Estado

If p=¢g=1(i.e., 1input and 1 output) and m = degree of
the transfer function is smaller than degree characteristic polynomial

(i.e., m < n), then we say that the system is in the “companion form”
when

besides the matrix A being in the “companion form” we
have matrices B, C and D in the forms:

8 C:[Bn Bn—l Bl]
0 where [y, ..., Bn_l e 3, , are the coefficients of
| £ | [ | the transfer function , q(s):

q(s) = Bys™ + Pps™ + o+ Pyys + B,




Equacdes de Estado

In the case of p=¢g =1 (i.e., 1 input and 1 output) and m = degree
of the transfer function is equal to degree characteristic

polynomial (i.e., m = n), then the of the transfer function
q(s) is given by:
q(s) =Bs" +Pys™ + Bps" + .+ Bys + B,
and we say that the system is in the “companion form” when
besides the matrix A being in the “companion form”, we
have matrices B, C and D in the forms:

O C:[Cn Cn—l oo Cl] D=[d1]
B _ 0 where d, =P /a,
and ¢, ..., C, e c,are the coefficients of the
0 , T(8), the remainder of division q(s)/p(s)
1 _ r(s) = ¢;s™! + ¢,8"% + .+ c S + C,
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Example 4:

If the ordinary differential equation (ODE) also had derivatives
of u, the above choice would not be appropriate.

Consider the system described by:

e SRR A TR AR T i B i b

Here the transfer function of the system is:




State Equations

Example 4 (continued):
Inthis case we define the following state variables:

sX,(s) X,(s)




State Equations

Example 4 (continued):
thus:

sLX,(s) = X,(s)
sLX,(s) = =2[X,(s) — 2LX,(s) + U(s)
Y(s) = 2LK,(s) + X,(s)




State Equations

Example 4 (continued):

and hence:
_() 1_ _O_
A= —
-2 -2 & 1
C=[2 1] D=[0]

Note that matrix A of this example is in the companion
form again, since the characteristic equation of the
system is:




State Equations

Example 5:
Consider the system which transfer function is given by:

In this case we have a second order system and thus,

it has Z poles
But since the numerator of the transfer function has

the same degree as the denominator, the system
also has 2 zeros
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Example 5 (continued):

Firstly, dividing the numerator by the denominator:




State Equations

Example 5 (continued):
that is,
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Example 5 (continued):
we have that:

s LX, (s)

sLX,(s) = 2X,(s) — 4X,(s) + U(s)
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Example 5 (continued):
and observe that the output Vy(1):

'Y@):_Sﬁi12£&9.+-2HH®

s +4s~-2

can be rewritten as:

" 1) G e

X(s) X,5(8)

AV () = TIX.(s) - X,(s) + 2[U(s)




State Equations

Example 5 (continued):

X,(s) + U(s)

X, (s) = X, (s) + 2LU(s)




State Equations

Example 5 (continued): A
then:

and therefore: C

- - C=[7-1]
A =

0
p

1_
—4_ | D=[2]

Observe that a matrix A here in this example is also in the
companion form




the characteristic equation and
the poles of the system




State Equations

The characteristic equation and the poles of the system

A system described in the form of state equations

Ax + Bu
Cx + Du

X

y

has its characteristic polynomial given by:

p(s) = det {[ sl -A |}
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The poles of the system are the

“eigenvalues” of A, which can be
repeated, i.e., double, triple, etc.

It is well known that the eigenvalues of A
are the roots of the characteristic polynomial

p(s) = det[ sUl—A ]
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Example 6:
For system of example 1 the matrix A is given by:

p(s) = det(sl —A) = det

(k/m) (s+H/m)

and therefore:
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Example 7:
For the system of example 2 the matrix A is given by:

and hence:

p(s) = s*+4s+3

and the poles of the system are the roots of p(s):

S:—l e S=—3
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Example 8:
For the system of example 3 the matrix A is given by:
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Example 8 (continued):

and therefore:

p(s) = s°+4s*+ 5s

and the poles of the system are the roots of p(s):

s =0, s=—2+] e S=—2-—]




State Equations

Example 9:
For the system of the example 4, the matrix A is given by:

and hence:
p(s) = s*+2s+?2

and the poles of the system are the roots of p(s):

s=—1+] e s=—1-—]
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Example 10:
For the system of the example 5, the matrix A is given by:

and hence:

p(s) = s*+4s-2

and the poles of the system are the roots of p(s):

s =045 e s=-445




equivalent representations
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Equivalent representations
Consider a system described by state equations

x=AX + Bu
y=Cx+ Du

which the state variable is X(t).
Now defining a new state variable X as:

x = Px P being invertible.

thus, since:

L]
X

= PX

we have that: 1 —
x = P'x

x = P'X
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and substituting the state equations we get:



State Equations

that is: -~
. — — this is another
X = AX + Bu representation
< — — < of the same
y = X + Du system in state
- __equations
where:
e
A =PAP!
— Note that the input u and
< B =PB the output y do not change.
E _ C p! Only the internal represen-
— tation of the system (as
= state variable)
D =D
.
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Example 11:

Consider a system of the 2" order of Example 4, which state
equations are:

The original state variable is:

X(t) ) _X1 (t)_ By ChOOSTé 1_
Q _Xz(t)_ P -
| 0
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Example 11 (continued):
we have that ~ —

_ X5(1) that is, %
x(t) = Px = %, (1) the new state variable x is the old
TN _ state variable X with its component

swapped




State Equations

Example 11 (continued): JAN

Note that matrix P of C
this example is its own Note also that:
inverse: P=P! = P.-P'=P.P=P?
but P-P 1 =1, thus,
P> =1

These matrices are called idempotent.
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Example 12: Now consider the system of the 3 order
of Example 3 above:

For the new state variable X be the 1
same as the old x, only changing the P = 0
third component x, by the double:

;3 = 2 X,, the choice of P should be: 0
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Example 12 (continued):
and then we have that

C=cP'=[1 0o o]0
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Example 12 (continued):
thus, the state equations below are a different representation
of the same system

- 2> |

B




conversion from the state equation
to
transfer function
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Conversion from the State Equation
to
Transfer Function

In order to convert the representation of a system

in state equations
r

Ax 4+ Bu
Cx + Du

X

y

.

to transfer function, the expression is given by,

Y (S)
U(s)

= C-sI-A)"B + D
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Example 13:

Consider the second order system of example 4 given by its state
equations

To calculate the transfer
function, first we find the

matrix (s I — A)




State Equations

Example 13 (continued):
and its inverse (s [ — A)™!
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Example 13 (continued):
thus, the transfer function of system is given by:

which agrees
with example 4.

Note that in order to find the characteristic equation only, it
would be enough to calculate:

p(s) = det[slll-A]=

as we have seen in example 9.
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Example 14:

Consider the second order system of the example 5 given by the
state equation

To calculate the transfer
function, first we find the

matrix (s 1 —A)
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Example 14 (continued):

and its inverse (s I — A)™!
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Example 14 (continued):

thus, the transfer function of the system is given by:

which agrees
with Example 5.

Note that in order to find the characteristic equation only, it
would be enough to calculate:

p(s) = det[sll-A]=

as we have seen in example 10.
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Example 15:

Consider the third order system of the example 3 given by the
state equation

To calculate the transfer
function, first we find the

matrix (s 1 —A)
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Example 15 (continued):

and its inverse (sI—A)™!

(sl —A) =

s°+4s+5 s + 4 1

3 9 3 g 3 2
S” +4s” + 55 S” +4s” + 55 S” +4s” + 55
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Example 15 (continued):
hence, the transfer function TF.=C (sI—A)"' B

O (sI-A)' |

thus, the transfer function of the system is given by:

which agrees
with example 3.
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Example 15 (continued):

Note that in order to find the characteristic equation only, it
would be enough to calculate:

det [ stl— A ]

p(s)

1
A~
j —

as we have seen in example 8.
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to be continued
( next class )
part Il
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