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“State Equations”

Control Systems

J. A. M. Felippe de SouzaJ. A. M. Felippe de Souza

(part I)



outputinput

We have seen in chapter 4 (“Systems Representation”) a form of 

representing linear and time invariant (LTI) systems using transfer 

functions that relates directly the input with the output.

S

Here we will see another form of representing systems by 

using internal variables (state variable). 

With the state variables we can build a system of 1st order 

differential equations that are called “state equations”.
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The representation of a system in state equations 

considers internal variables (state variables)

called the “state”. 

Normally  a “state vector”  x has  n components, where n
is the order of the system

The dimension of the state vector x can eventually be greater than the 

order of the system, but in this case there will be redundant equations.

“state variable”x =

x1

x2

xn

⋅⋅⋅
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For linear time invariant (LTI) systems of nth

order, the state equations have the form: 

where: 

A is a n x n matrix

B is a n x p matrix

C is a q x n matrix

D is a q x p matrix

with: 

p = number of inputs 

q = number of outputs

x =   A x +   B u

y =   C x +   D u

⋅

x = derivative of vector x⋅
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x = the derivative of vector x

x(t) =
⋅

x1(t)

x2(t)

xn-1(t)

xn(t)

⋅

⋅⋅⋅
x(t) =

x1(t)

x2(t)

xn-1(t)

xn(t)

⋅⋅⋅

⋅
⋅

⋅
⋅
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For the case of systems with 

only one input u(t), i.e.,

p = 1, we have that:

that is, in this case 

B is a column vector. 

For the case of systems with 

only one output y(t), i.e.,

q = 1, we have that:

C is a row vector.

D is a constant d1 (that is, 

D is a 1x1 matrix).

For the case of systems with 

only one input u(t) and one 

output y(t),

D = [ d1 ]

C = [ c1 c2 …   cn ]
b1

b2

bn

B = ⋅⋅⋅
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Example 1:
System cart-mass-spring

The ordinary differential equation (ODE) that describes 

this system, as seen in chapter 3 (“System Modelling”) is 

given by:

ukyyym =+′µ+′′
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Defining the state variable

where:

x1(t) = y(t) = position of the cart at instant t

x2(t) = y’(t) = velocity of the cart at instant t
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represents the 

internal state of 

the system.

Example 1 (continued):
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for example, 
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



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xx(0) o

This means that in the instant of time t = 0

the “state” of the system: the cart is passing by the origin

(that is, x1(0) = 0)

with velocity – 3m/s, 

(that is,  3m/s ,x2(0) = – 3).

Example 1 (continued):
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and since x1 = y   and x2 = y’  then:
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which is the representation of the 

system in state equations.

therefore:
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D = 0

A B

C

Example 1 (continued):
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Note that in this case D = 0.



Example 2:
System cart-mass-spring of previous example with

m = 1 

µ = 4 

k = 3
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thus:
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and hence:
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Example 2 (continued):

State Equations 
______________________________________________________________________________________________________________________________________________________________________________________



Example 3:
Consider the system described by:

u3y5y4y =′+′′+′′′

which the transfer function is given by: 

s5s4s
3

)5s4s(s
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Defining the 

state variable as:
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
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A = B =

C =

and hence:

This matrix A is said to be in the “companion form” 

that is because: 

 the elements above the main diagonal are = 1;

 the last row contains the characteristic equation coefficients 

in the inverse order and with opposite signals; 

 all other elements of the matrix are = 0.

Example 3 (continued):
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Note that matrices A of the 2 previous examples are also 

in the “companion form”. 
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In the general, matrix A in the “companion form” has the 

following aspect:

where ao, a1, … , an-1 and an are the coefficients of the 

characteristic equation p(s):
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n +  a1s

n-1 +  a2s
n-2 +  …  +  an-1s  +  an
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In the particular case, but very common, of ao = 1, matrix A in the 

“companion form” has the following aspect: 

where  a1, … , an-1 and an are the coefficients of the 

characteristic equation p(s):
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Equações de Estado 
______________________________________________________________________________________________________________________________________________________________________________________

besides the matrix A being in the “companion form” we 

have matrices B, C and D in the forms: 

D = [ 0 ]

C = [ βn βn-1 …   β1 ]0

0

0

1

B = ⋅⋅⋅
where β1, … , βn-1 e βn , are the coefficients of 

the transfer function numerator, q(s):

If p = q = 1 (i.e., 1 input and 1 output) and m = degree numerator of 

the transfer function is smaller than degree characteristic polynomial 

(i.e., m < n), then we say that the system is in the “companion form”

when

q(s)  =  β1s
n-1 +  β2s

n-2 +  …  +  βn-1s  +  βn
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besides the matrix A being in the “companion form”, we 

have matrices B, C and D in the forms: 

D = [ d1 ]C = [ cn cn-1 …   c1 ]0

0

0

1

B = ⋅⋅⋅ and c1, … , cn-1 e cn are the coefficients of the 

polynomial, r(s), the remainder of division q(s)/p(s)

In the case of p = q = 1 (i.e., 1 input and 1 output) and m = degree 

numerator of the transfer function is equal to degree characteristic

polynomial (i.e., m = n), then the numerator of the transfer function 

q(s) is given by:

r(s)  =  c1s
n-1 +  c2s

n-2 +  …  +  cn-1s  +  cn

where d1 = βo/ao

and we say that the system is in the “companion form” when

q(s)  = βos
n + β1s

n-1 +  β2s
n-2 +  …  +  βn-1s  +  βn



Example 4:

If the ordinary differential equation (ODE) also had derivatives

of u, the above choice would not be appropriate. 

u2uy2y2y +′=+′+′′

Here the transfer function of the system is: 

2s2s

2s
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Consider the system described by:
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Inthis case we define the following state variables:
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thus:

A B

C

D = 0

Example 4 (continued):
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D = [ 0 ]

and hence:

Note that matrix A of this example is in the companion 

form again, since the characteristic equation of the 

system is: 

2s2s)s(p 2 ++=

Example 4 (continued):

0      1

-2    -2
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C = [ 2 1 ]

0
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Example 5:

Consider the system which transfer function is given by:

In this case we have a second order system and thus, 

it has 2 poles

But since the numerator of the transfer function has 

the same degree as the denominator, the system

also has 2 zeros
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2s4s

7s
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Firstly, dividing the numerator by the denominator:
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We got the quotient 2 e o remainder (–s+7). Then,

Example 5 (continued):

State Equations 
______________________________________________________________________________________________________________________________________________________________________________________



that is,

Now defining the state variable
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we have that:
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can be rewritten as:
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thus:

and therefore we have:
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then:
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and therefore:

D = [ 2 ]

Observe that a matrix A here in this example is also in the 

companion form

A B

C D

Example 5 (continued):

C = [ 7  -1 ]
0     1

2   - 4
A =

0

1
B =
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the characteristic equation and 

the poles of the system



The characteristic equation and the poles of the system

A system described in the form of state equations

x =  A x +  B u

y =  C x +  D u

⋅

has its characteristic polynomial given by:

p(s) = det {[ sI – A ]}
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It is well known that the eigenvalues of  A
are the roots of the characteristic polynomial

p(s) = det [ s⋅I – A ]

The poles of the system are the  

“eigenvalues” of A, which can be 

repeated, i.e., double, triple, etc.
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Example 6:

For system of example 1 the matrix  A is given by:

thus, the characteristic polynomial p(s)  = det [ s⋅I – A ]  
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Example 7:

For the system of example 2 the matrix A is given by:
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thus, the characteristic polynomial p(s)  = det [ s⋅I – A ]  
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and hence:

and the poles of the system are the roots of p(s):

s = – 1 e s = – 3

p(s) = s2 + 4s + 3
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Example 8:

For the system of example 3 the matrix  A is given by:

thus, the characteristic polynomial   p(s)  = det [ s⋅I – A ]  
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and the poles of the system are the roots of p(s):

s = 0, s = – 2 + j e s = – 2 – j

and therefore:

Example 8 (continued):

p(s) = s3 + 4s2 + 5s
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Example 9:
For the system of the example 4, the matrix  A is given by:

thus, the characteristic polynomial p(s)  = det [ s⋅I – A ]  
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and the poles of the system are the roots of p(s):

s = – 1 + j e s = – 1 – j

and hence:

p(s) = s2 + 2s + 2
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Example 10:
For the system of the example 5, the matrix  A is given by:

thus, the characteristic polynomial p(s)  = det [ s⋅I – A ]  

A =
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and the poles of the system are the roots of p(s):

s = 0,45 e s = – 4,45

and hence:
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p(s) = s2 + 4s – 2
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equivalent representations



Equivalent representations

Consider a system described by state equations 

x =  A x +  B u

y =  C x +  D u

⋅

x =  P x
−

thus, since: 

x = P x− ⋅⋅

we have that:
x =  P-1 x−

x =  P-1 x−⋅⋅

which the state variable is x(t). 

Now defining a new state variable x as: 
−

P being invertible. 
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and substituting the state equations we get: 
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that is: 

x =  A x +  B u

y =  C x +  D u

⋅ − −
− −

−
−
−

where: 

A =  P A P-1−

B =  P B

C = C P-1

−
−

D = D 
−

Note that the input u and 

the output y do not change. 

this is another 

representation

of the same 

system in state 

equations

State Equations 
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Only the internal represen-

tation of the system (as 

state variable)



Example 11:

Consider a system of the 2nd order of Example 4, which state 

equations are:

[ ]







=









+









−−
=

x12y

u
1

0
x

22

10
xɺ

The original state variable is:

x(t) =
x1(t)

x2(t)

By choosing

P =
0       1

1      0

State Equations 
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Example 11 (continued):

we have that
that is, 

the new state variable x is the old 

state variable x with its component 

swapped

−x(t) =  Px = 
x2(t)

x1(t)
−











 −−
=












⋅












−−
⋅











== −

01

22

01

10

22

10

01

10
PAPA

1

[ ] [ ]21
01

10
12CPC

1 =







⋅== −

0DD ==








=








⋅







==

0

1

1

0

01

10
PBB
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Example 11 (continued):

[ ]







=









+







 −−
=

x21y

u
0

1
x

01

22
xɺ

A B

Note that matrix P of 

this example is its own 

inverse:









== −

01

10
PP

1

These matrices are called idempotent.  

P = P–1  P·P–1 = P·P = P2

P2 = I

Note also that:

but P·P-1 = I , thus,

C
−

− −
State Equations 
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Example 12: Now consider the system of the 3rd order

of Example 3 above: 

[ ]











=

















+
















−−
=

x001y

u

3

0

0

x

450

100

010

xɺ

A B

D = 0

C

For the new state variable x be the 

same as the old x, only changing the 

third component x3 by the double: 

x3 = 2 x3, the choice of P should be:

P =

−

−
1    0    0 

0    1   0

0    0    2

State Equations 
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Example 12 (continued):

and then we have that x(t) =  P x(t) = 
x1(t)

x2(t)

2 x3(t)

−

















⋅
















−−
⋅
















== −

5,000

010

001

450

100

010

200

010

001

PAPA
1

[ ] [ ]001

5,000

010

001

001CPC 1 =
















⋅== − 0DD ==

















=
















⋅
















==
6

0

0

3

0

0

200

010

001

PBB

















−−
=

4100

5,000

010

A

State Equations 
______________________________________________________________________________________________________________________________________________________________________________________



Example 12 (continued):

thus, the state equations below are a different representation 

of the same system

[ ]











=

















+
















−−
=

x001y

u

6

0

0

x

4100

5,000

010

xɺ

A B

C
−

− −

D = 0
−

State Equations 
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conversion from the state equation

to 

transfer function



Conversion from the State Equation

to 

Transfer Function

In order to convert the representation of a system

in state equations 

x =   A x +   B u

y =   C x +   D u

⋅

to transfer function, the expression is given by, 

=  C·(sI – A)–1·B  +  D
Y(s)
U(s)

____

State Equations 
______________________________________________________________________________________________________________________________________________________________________________________



[ ]







=









+









−−
=

x12y

u
1

0
x

22

10
xɺ

Example 13:

A B

C

D = 0

Consider the second order system of example 4 given by its state 

equations

To calculate the transfer 

function, first we find the 

matrix (s I – A)

State Equations 
______________________________________________________________________________________________________________________________________________________________________________________

s 1
(sI A)

2 s 2

− 
− =  + 



Example 13 (continued):

and its inverse (s I – A)–1

and hence, as D = 0 in this case, T.F. = C(sI – A)–1B

C B(sI – A)–1

State Equations 
______________________________________________________________________________________________________________________________________________________________________________________

2 2

1

2 2

s 2 1

s 2 s 2 s 2 s 2
(sI A)

2 s

s 2 s 2 s 2 s 2

−

+ 
 + + + +
 − =

− 
 + + + + 

[ ]
2 2

2 2

s 2 1

0s 2 s 2 s 2 s 2Y(s)
2 1

1U(s) 2 s

s 2 s 2 s 2 s 2

+ 
 + + + +  
 =  −   
 + + + + 



thus, the transfer function of system is given by: 

Note that in order to find the characteristic equation only, it 

would be enough to calculate: 

p(s) = det [ s⋅I – A ] =

= s2 + 2s + 2

as we have seen in example 9.

which agrees 

with example 4.
2s2s

2s

)s(U

)s(Y
2 ++

+=

State Equations 
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Example 13 (continued):



[ ]







+−=









+









−
=

u]2[x17y

u
1

0
x

42

10
xɺ

Example 14:

A B

C D

Consider the second order system of the example 5 given by the 

state equation

To calculate the transfer 

function, first we find the 

matrix (s I – A)

s 1
(sI A)

2 s 4

− 
− =  − + 

State Equations 
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Example 14 (continued):

and its inverse (s I – A)–1

and hence, the transfer function

C B(sI – A)–1

















−+−+

−+−+
+

=− −

2s4s

s

2s4s

2
2s4s

1

2s4s

4s

)AsI(

22

22
1

[ ] 2
1

0

2s4s

s

2s4s

2
2s4s

1

2s4s

4s

17
)s(R

)s(Y

22

22

+







⋅
















−+−+

−+−+
+

⋅−=

D
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thus, the transfer function of the system is given by: 

Note that in order to find the characteristic equation only, it 

would be enough to calculate: 

p(s) = det [ s⋅I – A ] =

= s2 + 4s – 2

as we have seen in example 10.

2s4s

3s7s2

)s(U

)s(Y
2

2

−+
++= which agrees 

with Example 5.

State Equations 
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Example 14 (continued):



Example 15:

Consider the third order system of the example 3 given by the 

state equation

[ ]











=

















+
















−−
=

x001y

u

3

0

0

x

450

100

010

xɺ

A B

D = 0

C

To calculate the transfer 

function, first we find the 

matrix (s I – A) 















+
−

−
=−

4s50

1s0

01s

)AsI(

State Equations 
______________________________________________________________________________________________________________________________________________________________________________________



Example 15 (continued):

and its inverse (sI – A)–1





























++++
−

++++
+

++++
+

++
++

=

=− −

s5s4s

s

s5s4s

s5
0

s5s4s

s

s5s4s

s4s
0

s5s4s

1

s5s4s

4s

s5s4s

5s4s

)AsI(

23

2

23

2323

2

232323

2

1
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hence, the transfer function T.F. = C (s I – A)–1 B

[ ] ( )
















⋅−⋅= −

3

0

0

AIs001
)s(R

)s(Y 1

C B

s5s4s

3

)s(R

)s(Y
23 ++

=

(sI – A)–1

thus, the transfer function of the system is given by: 

which agrees 

with example 3.
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Example 15 (continued):



Note that in order to find the characteristic equation only, it 

would be enough to calculate: 

p(s) = det [ s⋅I – A ] 

= s3 + 4s2 + 5s

= s (s2 + 4s + 5)

as we have seen in example 8.

State Equations 
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Example 15 (continued):



to be continued

( next class ) 

part II

State Equations 
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