Control Systems

"Systems Representation"

J. A. M. Felippe de Souza

Relation between:

Laplace Transform of the output y(t)
Laplace Transform of the input x(t)

considering inicial conditions zero.

X(s)

Systems Representation

Pierre Simon Laplace, 1749-1827

Transfer Function

$$= \frac{Y(s)}{X(s)}$$

X(s) = Laplace Transform of x(t)

Y(s) = Laplace Transform of y(t)

Systems Representation

Transfer Function

output

$$\frac{\mathbf{Y}(\mathbf{s})}{\mathbf{X}(\mathbf{s})}$$

X(s) = Laplace Transform of x(t)

Y(s) = Laplace Transform of y(t)

input

F.T. =
$$\frac{X(s)}{U(s)}$$
 input

U(s) = Laplace Transform of u(t)

X(s) = Laplace Transform of x(t)

Systems Representation

cart / mass / spring

$$mx'' + \mu x' + kx = u,$$

or

$$m\frac{d^2x}{dt^2} + \mu\frac{dx}{dt} + k x = u,$$

$$\begin{cases} m \frac{d^2 x}{dt^2} + \mu \frac{dx}{dt} + k x = mx'' + \mu x' + kx = u, \\ x'(0) = 0, & x(0) = 0 \end{cases}$$

hence,

$$m s^{2}X(s) + \mu s X(s) + k X(s) = U(s),$$

and then, the Transfer Function (T. F.) is given by

F.T. =
$$\frac{X(s)}{U(s)} = \frac{1}{ms^2 + \mu s + k}$$

F.T. =
$$\frac{X(s)}{U(s)}$$

input

U(s) = Laplace Transform of u(t)

X(s) = Laplace Transform of x(t)

$$mx'' + \mu x' + kx = u,$$

or

$$m\frac{d^2x}{dt^2} + \mu\frac{dx}{dt} + k x = u,$$

$$\begin{cases} m \frac{d^2 x}{dt^2} + \mu \frac{dx}{dt} + k \ x = mx'' + \mu x' + kx = u, \\ x'(0) = 0, \qquad x(0) = 0 \end{cases}$$

thus,

$$m s^{2}X(s) + \mu s X(s) + k X(s) = U(s),$$

and then, the Transfer Function (T. F.) becomes

F.T. =
$$\frac{X(s)}{U(s)} = \frac{1}{ms^2 + \mu s + k}$$

$$\mu = 4 \text{ N} \cdot \text{s/m}$$

$$k = 3 N/m$$

$$m$$
 = 1 kg

$$\mu = 4 \text{ N} \cdot \text{s/m}$$

$$k = 3 N/m$$

We have seen that these 2 systems are described by the same differential equation (of 2nd order) and have the same model.

$$\begin{cases} \frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 3x = x'' + 4x' + 3x = u, \\ x'(0) = 0, & x(0) = 0 \end{cases}$$

Hence, the Transfer Function (T.F.) is

F.T. =
$$\frac{X(s)}{U(s)} = \frac{1}{s^2 + 4s + 3}$$

Transfer Function (T.F.) of the system

 $V_i(s)$ = Laplace Transform of $v_i(t)$ $V_o(s)$ = Laplace Transform of $v_o(t)$

$$LC v''_o + RC v'_o + v_o = v_i,$$

or

$$LC \frac{d^2 v_o}{dt^2} + RC \frac{dv_o}{dt} + v_o = v_i,$$

$$\begin{cases}
LC \frac{d^{2}v_{o}}{dt^{2}} + RC \frac{dv_{o}}{dt} + v_{o} = LCv_{o}'' + RCv_{o}' + v_{o} = v_{i}, \\
v_{o}'(0) = 0, v_{o}(0) = 0
\end{cases}$$

hence,

$$LC s^{2}V_{o}(s) + RC s V_{o}(s) + V_{o}(s) = V_{i}(s),$$

thus, the Transfer Function (T.F.) of the system is given by

F.T. =
$$\frac{V_o(s)}{V_i(s)} = \frac{1}{LCs^2 + RCs + 1}$$

$$R = 1000 \Omega$$
 $L = 250 H$

$$C = 1,333 \times 10^{-3} F$$

Systems Representation

RLC circuit series

$$\begin{cases} \frac{d^2 v_o}{dt^2} + 4 \frac{d v_o}{dt} + 3 v_o = v''_o + 4 v'_o + 3 v_o = 3 v_i, \\ v'_o(0) = 0, \quad v_o(0) = 0 \end{cases}$$

and therefore the Transfer Function (T.F.) of the system will be:

F.T. =
$$\frac{V_o(s)}{V_i(s)} = \frac{3}{s^2 + 4s + 3}$$

Transfer Function (T.F.) of the system

X(s) = Laplace Transform of x(t)

$$J \omega' + \mu \omega = x ,$$

or

$$J\frac{d\omega}{dt} + \mu \omega(t) = x,$$

$$\begin{cases} J\frac{d\omega}{dt} + \mu \omega = J\omega' + \mu\omega = x\\ \omega(0) = 0 \end{cases}$$
 hence,

$$Js\Omega(s) + \mu\Omega(s) = X(s),$$

and therefore, the Transfer Function (T.F.) of the system is given by

F.T. =
$$\frac{\Omega(s)}{X(s)} = \frac{1}{Js + \mu}$$

 $J = 0.5 \text{ kg/m}^2$ $\mu = 2 \text{ Nom /rad/s}$

$$\begin{cases} \frac{d\omega}{dt} + 4\omega = \omega' + 4\omega = 2x, \\ \omega(0) = a \end{cases}$$

thus, Transfer Function (T.F.) of the system is

T.F. =
$$\frac{\Omega(s)}{X(s)} = \frac{2}{s+4}$$

Transfer Function (T.F.) of the system

Y(s) = Laplace Transform of y(t)

seismograph

$$m y'' + \mu y' + k y = -m x''_i$$

or

$$m \frac{d^2 y}{dt^2} + \mu \frac{dy}{dt} + k y = -m \frac{d^2 x_i}{dt^2},$$

seismograph

$$\begin{cases} m \frac{d^2 y}{dt^2} + \mu \frac{dy}{dt} + ky = m y'' + \mu y' + k y = -m x_i'', \\ y(0) = 0, \quad y'(0) = 0 \end{cases}$$

hence,

$$m s^{2}Y(s) + \mu s Y(s) + k Y(s) = -m s^{2} X_{i}(s),$$

seismograph

and therefore, the Transfer Function (T.F.) of the system is given by

T.F. =
$$\frac{Y(s)}{X_i(s)} = \frac{-ms^2}{ms^2 + \mu s + k}$$

Transfer Function (T.F.) of the system

Transfer Function (T.F.)

Observe that the Transfer Function (T.F.) should be expressed as polynomial/polynomial in its final form, that is

$$q(s)/p(s)$$
.

T.F. = G(s) =
$$\frac{Y(s)}{R(s)} = \frac{q(s)}{p(s)}$$

T.F. =
$$G(s) = \frac{q(s)}{p(s)}$$

The roots of q(s) are called the zeros of the system.

The roots of p(s) are called the poles of the system.

T.F. = G(s) =
$$\frac{q(s)}{p(s)}$$

The polynomial p(s) is called the characteristic polynomial of the system.

The equation

$$p(s) = 0$$

is known as the

<u>characteristic equation</u> of the system.

Transfer Function (T.F.) of the system

or simply,

Transfer Function (T.F.) of the system

Single Block or Black box

Block Diagrams

Having the T.F. we can represent systems with Block Diagrams:

Transfer Function (T.F.) of the system

Block Diagrams is the theme of the next chapter.

There are several types of connections with blocks, such as for example, 'blocks in cascade':

Blocks in cascade

Blocks with feedback:

Block G(s) with unit feedback

Example 1:

We'll see in the next chapter that the following block diagram

where:

$$G(s) = \frac{5}{s(s+4)}$$

has the following transfer function:

T. F.
$$=\frac{Y(s)}{R(s)} = \frac{\frac{5}{s(s+4)}}{1+\frac{5}{s(s+4)}} = \frac{5}{s^2+4s+5}$$

Example 1 (continued):

T. F.
$$=\frac{Y(s)}{R(s)} = \frac{5}{s^2 + 4s + 5}$$

This system has two poles p_1 and p_2 and no zeros.

$$p_1 = -2 + j$$
 $p_2 = -2 - j$

which are the roots of the characteristic polynomial p(s)

$$p(s) = s^2 + 4s + 5$$

and the characteristic equation of the system is given by:

$$s^2 + 4s + 5 = 0$$

Blocks with feedback:

Block G(s) with non unit feedback H(s)

Example 2:

We'll see in the next chapter that the following block diagram

where:

$$G(s) = \frac{5}{s(s+4)}$$

$$H(s) = \frac{1}{(s+3)}$$

has the following transfer function:

T. F.
$$=\frac{Y(s)}{R(s)} = \frac{\frac{5}{s(s+4)}}{1 + \frac{5}{s(s+4)} \cdot \frac{1}{(s+3)}} = \frac{\frac{5(s+3)}{(s^3 + 7s^2 + 12s + 5)}}{\frac{5}{s(s+4)} \cdot \frac{1}{(s+3)}}$$

Example 2 (continued):

T. F.
$$=\frac{Y(s)}{R(s)} = \frac{5(s+3)}{(s^3+7s^2+12s+5)}$$

This system has two poles p_1 , p_2 and p_3 and one zero z_1 .

$$p_1 = -4.65$$
 $p_2 = -1.726$ $p_3 = -0.623$ $z_1 = -3$

which are the roots of the characteristic polynomial p(s)

$$p(s) = s^3 + 7s^2 + 12s + 5$$

and of the equation s + 3 = 0.

The characteristic equation of the system is given by:

$$s^3 + 7s^2 + 12s + 5 = 0$$

Departamento de Engenharia Eletromecânica

Thank you!
Felippe de Souza
felippe@ubi.pt