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Systems modelling
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Systems modelling

Newton’s 2nd [ aw
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spring / mass / damper

applied force
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spring / mass / damper
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applied force
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spring / mass / damper

1 kg U =4 N-s/m

u(t) S X(t)




Systems modelling

spring / mass / damper

m = 1Kkg U =4 N-s/m
and the model becomes:
- d%x dx " :
+ 4— + 3x = x +4x +3x = u,
< dt? dt

xX'(0)=a, x(0)=b
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u(t) S X(t)




translational me 23mca| motion

e




Systems modelling

translational mechanical motion
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translational
mechanical
Mmotion

displacement
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problem similar to the
previous one
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damper u(t)
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translational
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translational
mechanical
motion

displacement
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Again, using the Newton’s 2" Law

lapplied force we obtain:
u(t)




Systems modelling

spring / mass / damper  or  translational mechanical motion

Thus, these two systems are described by the same differential
equation ( ), that is, have the same model.:

= mx' + Ux + kx = u
initial conditions:

x'(0)=a,  x(0)=b
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spring / mass / damper  or translational mechanical motion
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Systems modelling

Now, giving the
same values to m,
U and’k that has
been given to the
problem spring /
mass / damper,
we have:

displacement

j =1 kg

X(0)

k 3 N/m
applied force

u(t)
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spring / mass / damper  or translational mechanical motion

m = 1 kg U =4N-s/m k =3 N/m

r

d2X dx _ " ' —
m——-+U—+Kkx=mx" +Ux +kx =u,
) dt dt

x'(0)=a,  x(0)=b
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Systems modelling

spring / mass / damper  or translational mechanical motion

m = 1 kg U =4 N-s/m k =3 N/m

(both have the same model)

u(t) S X(t)
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translational mechanical motion

Observation:
Note that if 1 =0

this system becomes the “harmonic oscillator”.




circuito RL(ESérie
%
X




Systems modelling

RLC series circuit

Input
voltage voltage
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RLC series circuit

input voltage

vi(D)

output voltage

Vo (1)

iInput output
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Kirchhoftf Law (loop rule):

Gustav Kirchhoff,
- 1824-1887
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RLC series circuit

and therefore,

or

Then, this system is also described by one differential
equation of 2" order, as the previous example.



Systems modelling

RLC series circuit

That is, the model of this system is a differential equation
of :

2
LcdYe 4+ re e O
dt dt

= RCv, + LCv, + v = v
initial conditions:

v.(0) = a, v.(0)=b
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RLC series circuit

v (0)=a, v, (0)=b

.
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RLC series circuit Dando valores

"ﬁ"ﬂ‘f}_ paraoR, L e C:
h

R=1000Q2 L 250 H

W0

C=1333x10"F

R =1000 Q

L =250 H

C=1,333x10°F




Systems modelling

F

C=1333x10"

RLC series circuit

v.(0)=a, v (0)=b R = 1000 O
L =250 H
C=1,333x103F

.
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RLC series circuit

-
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2
LCd \;" +RCdV° +v =LCv. +RCv, +v_=v,.
dt dt

R = 1000 O
v,(0)=a, v, (0)=b L =250 H

v;(1) | S Vo (1) .
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RLC series circuit
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Systems modelling

rotational mechanical motion

friction

inertia load

= Triction coeftricient [N-m /raa/s
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rotational mechanical motion

friction
.~ damper

torqgue applied angular velocity

X(t)

INput output



Systems modelling

rotational mechanical motion

Using Newton's Law for rotational systems

Z momentos = J W',

friction
.~ damper

X(t) \/ / “

inertia load

we obtain

Jw+ pw = x,



Systems modelling

rotational mechanical motion

Thus, this system is described by a differential-equation
(of ):

= Jw + pw = X

initial condition:

w(0) =a
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rotational mechanical motion

that is,
the model of this system is a differential equation of 15t 6rder:

friction

\ o (t) .~ damper
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Systems modelling

Now, giving values to J and U =2/N:m /rad/s

friction

\ - damper
A ) w

inertia load

J

J+uoo:Joo'+ LW = X .
5 dt

w(0) =a




Systems modelling

Now, giving values to J and L U =2-N:m /rad/s
friction
/ \— ] .~ damper
} =J|=0,5 kg/m° } i
X(1) \ ; [L=2N-m/rad/s
inertia load
dw :
Jd—+uoo:Joo+uoo:xz
3 t

w(0) =a
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rotational mechanical motion

friction

/ \ . .~ damper

) |
JI=0,5 kg/m
\

x(t)

inertia load
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Systems modelling

seismograpn

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz;z;z;:;z2/4,

X;(t) = box displacement with respect to inertial space;
X,(t) = mass displacement with respect to inertial space;

y(t) = mass displacement with respect to the box.

y(t) = [x,(D) - x(D)]



Systems modelling

seismograph

DOX mMmass m
displacement displacement

X,(t) y(t)

input output
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Again, by Newton’'s 2nd Law

' Isaakewton,

v v

y” (1) y'(t) y(©)
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seismograph

thus,
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seismograph

y'(0) =b

<
~
-
N~

[

oo




a hydraulic serd-motor

<

@\\Q




Systems modelling

hydraulic servo-motor

input of the system outputiofithe system
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Systems modelling

hydraulic servo-motor

Ly
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we obtain, / A2 \ AK
m y"(t) + u+—p YO = 20k,
\ K, J K,
or,
2 ( R
mﬁ_l_ |,1+Ap dy —Ale(t),
d> | K, )dt K,



Systems modelling

hydraulic servo-motor

P oil density [kg/m?];

Q flow rate ofoil that goes to the power cylinder (mass
flow rate) [kg/s];

AP (P, — P,) = pressure difference in the power
cylinder (pressure drop) [N/m?].

Q=K, x — K, AP



a thermal(gsystem
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thermal system

0(t)
e
[[— hot

liquid

output



Systems modelling

thermal system

we obtain,

rRc 39 . 8(t) = Rh.(1),

h.(t) = heat input rate [cal/s];

O(t) = heat output temperature [°C];

R = thermal resistance (gain of the system) [°CIS/cal];
C = thermal capacitance (heat capacity) [cal/°C];

T = RC = time constant of the system [s].



Modelizacao de Sistemas

These examples above are simple, but serve to illustrate that
many physical systems can be modeled as ordinary differential
equations.

Therefore, many of the differential equations we have already
seen in examples in the previous chapter may be the modeling
of an original physical system.
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Systems modelling

A system described by partial differential equations:

0°u N 0’u 9%u

k +

6x_2 ay_2 022/

k(u, tu, tu_ )

\NN\YX
this
. describes the
system linear
. space wave
continuous, .
propagation

time invariant,

and causal
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or, a system described by
difference equations:

discrete system,
nonlinear,

causal.




Systems modelling

More complex systems are represented not only by ongb
but by several equations.

f. H
X = Hi- A (x, X, x5) X — X [lul +k1(ml)x4]
Xy

X, =Wk, (my) Lx,x, — x, [/,12 + kyg

Xy = (= @)k (my) x, X, + kyy X, = 1 X

Xy = N My x5~ x, [kl(ml) K, +:uv]

This system describes the dynamic
of the evolution of AIDS



Thank you!

Felippe de Souza
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