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Abstract This paper discusses the implementation of the techniques for exact 
linearization by state feedback and pole placement by means of an algorithm that controls 
a magnetic levitation system, represented by a didactic kit. The algorithm was developed 
by using the programming language software Executive, employed here to communicate 
the computer with the kit. Initially, the exact linearization technique is applied with the 
aim of obtaining a linear system from the nonlinear state feedback formulation of the 
system. The linearization is made through of direct cancellation of nonlinear functions, 
which represent the phenomenological model of the system. With the linear system it 
becomes possible to apply classical techniques of the linear control such as the pole 
allocation technique, which is applied here. The obtained results from Matlab simulations 
and also from practical implementations shows that the control system of magnetic 
levitation is achievable. 
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1. INTRODUCTION 
 
This article addresses the implementation of control 
techniques to a nonlinear Magnetic Levitation System 
(MLS) by using algorithms of control. The MLS was 
chosen because it has nonlinear dynamics, an area of 
great interest in studies, and also because of the 
physical system (a teaching kit) to be available for 
practical tests, allowing not only the experimental 
validation but also favouring the continuity work. 
 
The MLS used is manufactured by ECP - Educational 
Control Product (www.ecpsystems.com) and will be 
described in more detail in section 2. The aim is to 
implement a control algorithm in the programming 
language of the kit, using the software Executive, to 
control the displacement of a hard magnetic over a 
glass guide. The movement is caused by the magnetic 
force produced by the magnetic field generated by 
applying an electric current in a coil.  
 
The relationship of the electric current applied to the 
coil and the displacement of the magnetic disk is 
given by a nonlinear second order differential 
equation. Therefore, to control the position of the disk 
may be resorted to the use of nonlinear control 
techniques, such as fuzzy controllers, neural, 
neurofuzzy, exact linearization, among others. In the 
present work the exact linearization technique is used. 
 

A linearization technique allows the accurate trans-
formation of a nonlinear system into a linear one 
through the incorporation of compensating nonlinear 
in the meshes of the control system. The 
incorporation is done through feedback from the 
states of the nonlinear system. Thus, there is a need of 
accessing all the states. In the case of MLS studied 
states are able to be measured.  
 
In order to apply state feedback, the system must have 
the dynamics written as uxgxfx )()( +=&  where the 

functions f(x) and g(x) represent the nonlinearities of 
the state, u the control input, and x is the vector of 
state. Regarding the nonlinear functions, it is 
important that the nonlinearities of the physical 
system is well represented by the mathematical 
model, otherwise the control system will not act 
effectively on the basis of having been designed 
considering the cancellation of system nonlinearities. 
The mathematical model obtained for the MLS of the 
ECP was compared with actual data input and output 
of the plant and showed satisfactory results. 
 
The exact linearization technique proposes to 
implement a control law u such that the system has an 
input/output linear relationship. There are several 
well known techniques for effective control of linear 
system, such as the pole placement technique (Ogata, 
2006), which has been used here. In this case, the 
feedback gains are determined by allocating the poles 
of the transfer function of closed loop system in 
desired positions.  



2. THE MODEL 
 
2.1 Magnetic Levitation System 
 
In the present work the MLS made by ECP was used 
and is shown in Fig. 1. It comprises two magnetic 
discs, a glass column, two laser sensors and two coils. 
The sensors are used to obtain the system response 
associated with the disc positions. The system input is 
given by the application of an electrical current to the 
coils. The physical system communicates with the 
computer via Digital Signal Processing (DSP) and a 
black box is responsible for the electrical current 
drivers and the energy supply. 
    
This MLS can be classified according to two modes, 
SISO (Single Input Single Output) or MIMO 
(Multiple Input Multiple Output) and this depends on 
the desired system configuration. In the SISO mode 
only one disc is used whereas in the MIMO mode two 
discs are used. Here the MLS was configured to 
operate in the SISO mode. 
 

 

 
 
Fig. 1. Magnetic Levitation System made by ECP. 
 
The MLS manual (Parks, 1999) shows the 
mathematic model, based on the physical laws, which 
allows us to obtain its differential equation model. 
The development of the mathematic model is beyond 
the scope of this paper. Through the balance of 
forces, the equation is given by (Laithwaite, 1965). 
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where: 
y   -  magnetic disc position; 
•
y  -   first derivative of the magnetic disc position; 
••
y  -   second derivative of the magnetic disc position; 

c   -   air viscosity coefficient; 
m -   magnetic disc mass; 

mF -  magnetic force applied to the magnetic disc. 
 
The magnetic force can be written as (Parks, 1999) 
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where, 

i  - electrical current applied on the coil; 
a and b - are constants related with the coil properties. 
 
By substituting (2) in (1) gives a nonlinear 
relationship between the magnetic disc position and 
electrical current applied to the coil  
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2.2 Parameter Estimation 
 
There are five parameters in (3): g, c, m, a and b. The 
first three are considered as constant and known 
(Parks, 1999) having the following values: g = 9.81 
[m/s2], m = 0.12 [Kg] and c = 0.15 [Ns/m]. As for the 
parameters a and b are constants related with 
magnetic coil properties and must be estimated. In 
Silva (2009), the least square and Monte Carlo 
methods were used to estimate a and b. Accordingly 
with Silva (2009) and based on a cost function, the 
Monte Carlo method presented the best values for 
these parameters as being a = 0.95 and b = 6.28, 
which have been adopted through this paper. 
 
 

3. THE FEEDBACK LINEARIZATION 
TECHNIQUE 

 
Feedback linearization can be applied to a certain 
class of nonlinear systems, including the MLS 
studied, and enables to transform the original system 
models into equivalent models of a simpler form. The 
control scheme uses the exact linearization with state 
feedback based on the cancellation of nonlinear 
functions. However, to enable the application of the 
technique, the system dynamic must be represented 
by (Guadarbassi and Savaresi, 2001) 
 

uxgxfx )()( +=&  (4) 
 
where the functions f(x) and g(x) represent the 
nonlinearities of the states,  u is the control system 
input and x is the state vector. Furthermore, three 
conditions must be satisfied.  
The first condition is that the system is controllable, 
so that the matrix formed by vector fields f(x) and 
g(x) must have rank n, where n is the order of the 
system. The second condition is that the system is 
involutive. The third condition requires g(x) ≠ 0,∀  x. 
 
Once the conditions are satisfied it is possible to 
determine a diffeomorphism )(XTZ = . After this, the 

dynamic of the system given by (4) can be 
transformed into the form (Isidori, 1995) 
 

)]()[(1 ZuZBAZZ αβ −+= −
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 (5) 



where Z is the new vector of states, A and B are 
constant matrices obtained from the model of the 
MLS, u the control input linearizante e )(Zα  and 

)(Zβ  are functions that represent the feedback of the 

states. A feedback signal for the nonlinear system is 
chosen in the form  
 

vZZu )()( βα +=  (6) 
 
Thus, the linear system can be written in the form 
 

BvAZZ +=
•

 (7) 

 
where v is the control signal (control law) for the 
system after linearization. The determination of v will 
be discussed in next section. 
 
 
3.1 Linearization of the MLS Made by ECP 
 
The model of the MLS made by ECP was presented 
in (3) and the two conditions for application of the 
exact linearization were presented in the last 
subsection. The variables of states and the feedback 
signal u can be set as follows: 
 

iu =        yx =1        
•

= yx2 . (8) 

 
The dynamic of the system given by (3) can be 
rewritten in the form given in (4) 
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The functions F(X) and G(X) that contain the 
nonlinearities of the system can be set as follow 
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The transformation T(X) can be set as (Khalil, 2002) 
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The functions )(Zα and )(Zβ can be calculated in the 

form given by: 
 

4
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Finally, the feedback signal u can be rewritten by: 
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The application of the feedback signal u over the 
system given by (9) will cancel the nonlinearities and 
the system will be transformed into a linear system 
given by (7). In the same way but using (12) (Slotine, 
1991) 









=














=

•

•
•

v

x

x

x
Z 2

2

1
. (16) 

 
With the linear system one can design the linear 
controller. Here pole placement technique is used, an 
this will be described in the next section.  
 
 
 

4. CONTROL USING POLE PLACEMENT 
 
 
The pole assignment technique is actually the 
allocation of the poles of the closed-loop system at 
any desired position by means of a state feedback. 
Thus, one can combine the technique of state 
feedback linearization with this pole placement 
technique. The requirement is that the system is 
completely state controllable, that is the case of MLS 
studied.  
 
Whereas the MLS can be written in the form of 
Equation (16), as shown above, one can propose a 
control law as: 
 

kZv −=  (17) 

 

where ][ 21 kkk =  is called the feedback gain 

matrix and Z represents the state vector. 
 
To determine k, three methods are widely circulated: 
Ackermann formula, the transformation matrix and 
the direct substitution (Franklin, et. Al., 1995). Since 
the MLS has order n ≤ 3 the determination of using 
the method of replacing direct substitution becomes 
simpler. 
In this method it is essential that the characteristic 
polynomial given by (18) to be known  
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where A and B are constant matrices and can be 
obtained by combining equations (7) and (16): 
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and therefore, 
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Thus, the polynomial is given by: 
 

12
2

21

1
)( ksks

ksk

s
sp ++=

+
−

=  (20) 

 
Allocating the poles of the characteristic polynomial 
in the desired positions the values of k1 and k2 can 
determined. Thus, setting 11 −=s  and 22 −=s , we 

have that: 
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or, 
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and comparing both sides of (22), we obtain: 
 

            21 =k  and 32 =k  
 
And therefore, the control action by pole placement 
for the MLS with feedback from the states will be: 
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For the case of tracking a signal of reference: 
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5. SIMULATIONS AND ANALISYS RESULTS 
 
 
In order to apply exact linearization techniques for 
state feedback and pole placement in the real system's 
magnetic levitator ECP an algorithm has been 
developed in the programming language software 
Executive. The flowchart of operation for this 
algorithm can be seen in Figure 2. The model 
parameters used in the implementation were 
presented in subsection 2.1. The input signal applied 
to the magnetic levitation system was a step from 0 to 
4 centimeters, so the disc should stabilize in the 
position of 4 cm. 
 

 
 
Figure 2. Flowchart of operation of the control 
algorithm. 
 
Initially, the project control system by exact 
linearization and pole placement was simulated in 
Matlab/Simulink. The block diagram drawn can be 
seen in Figure 3. 
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Figure 3. Block diagram in Matlab / Simulink for the 
system of exact linearization. 
 
In the simulation, it was observed that the system 
showed an error in the scheme and eliminate it, it was 
necessary to obtain the transfer function of closed 
loop system to analyze the behaviour of the SLM. 
From the representation of the system by equations of 
state obtained previously, using Matlab, one can 
obtain the transfer function of closed loop system 
(Matsumura, 1974): 
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By Final Value Theorem, when t →∞ , s →0. Thus, 
by observing (25) one can see that the gain regime is 
given by: 
 

Exact Linearization 
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And to eliminate the error in the scheme, was inserted 
with a constant value opposite to that found in (26), 
k3=2, at the input of the system by multiplying the 
reference signal r, as can be seen in the output of the 
system shown in Figure 4. 
 

 
Figure 4. Comparison between the reference signal 
and the disc displacement without error in the 
scheme. 
 
It is observed that the driver had a satisfactory answer 
since it was expected that the control signal would 
cause the system output to follow the reference signal 
input and this could be seen in the chart. 
 
The current applied to the coil represents the control 
effort to track the position of the magnetic disk. 
Although the software does not provide the Executive 
Chart of the behaviour of the chain, we can analyze 
the voltage applied to the coil, as shown in Figure 5. 
 

 
Figure 5. Behavior of the voltage applied to the coil. 
Looking at the graph of Figure 5 one can see that the 
control effort is well associated with the behaviour of 
the position of the magnetic disk shown in Figure 4. 
In transitory control the effort varies until the system 

reached the steady state in about 0.6 seconds, and 
stabilizes when the disk reaches the desired height of 
4 cm. 
 
 
 

6. CONCLUSIONS  
 
In the present work the combination of two 
techniques to control a magnetic levitation system, 
namely, exact linearization by state feedback and pole 
placement. It was found through the analysis of 
experimental results that the controller had a level of 
overshoot tolerate a satisfactory answer because, after 
the elimination of error in the scheme, the output 
signal tracked the input signal, which was expected. It 
was also observed that the effort to control showed a 
significant response when associated with the system. 
For future work it will be analyzed the system output 
when applied to different reference signals and how 
the system had acted in the presence of disturbances. 
And yet, to implement adaptive systems techniques 
for correcting errors of nonlinear functions of the 
model. 
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