
 
 

 

  

Abstract— In recent years the area of nonlinear control 
systems has been the subject of many studies. Computational 
developments have enabled more complex applications to 
provide solutions to nonlinear problems. The purpose of this 
paper is to use a combination of two techniques to control a 
nonlinear system: the Magnetic Levitation System. First, the 
exact linearization technique with state feedback is applied to 
obtain a linear system. Second, the linearization is made via 
direct cancellation of nonlinear functions, which represent the 
phenomenological model of the system. Finally, to deal with the 
presence of uncertainty in the system model, an adaptive 
controller is used. The controller is based on fuzzy logic to 
estimate the functions that contain the nonlinearities of the 
system. The fuzzy system is a zero-order Takagi-Sugeno-Kang 
structure and the adaptive controller is implemented in a 
simulated environment (Matlab Simulink ©). The methodology 
guarantees the convergence of the estimates to their optimal 
values, and in turn the overall stability of the system. The 
results show the controller output signal tracks a reference 
input signal. For future work this adaptive controller should be 
implemented in a real physical system. 

I. INTRODUCTION 

N recent years the area of nonlinear control systems has 
been the subject of many studies. Computational 
developments have enabled more complex applications to 

provide solutions to nonlinear problems. This paper shows a 
combination of a linearization technique and Artificial 
Intelligence (AI) to control a Magnetic Levitation System 
(MLS). This system was chosen since it has nonlinear 
dynamics and a didactic kit of the physical system is 
available to perform tests and to continue with future work.  
 The MLS used is manufactured by ECP – Educational 
Control Products (www.ecp.com) and will be described in 
more detail in section II. The aim of this work is to control a 
magnetic disc movement over a glass column as a result of 
the application of an electrical current on a coil [1],[2]. 
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 The relationship between the electrical flow and the 
magnetic disc movement is given by a second order 
nonlinear ordinary differential equation of the type 

( ) ( ) ( )[ ]uxGxFBAxxtx ++== ,φ& . Several nonlinear control 

strategies can be used to control the disc position, for 
example, fuzzy, neural network, adaptive control, exact 
linearization [3],[4]. In this paper both the exact linearization 
technique and fuzzy will be used.  
 Exact linearization enables a transformation from a 
nonlinear system to a linear system through the addition of 
nonlinear compensators in the system control loops [5],[6]. 
However, the exact linearization technique with state 
feedback requires a mathematic model that represents the 
dynamics of the real plant well. Furthermore, the 
uncertainties in the phenomenological model cannot 
guarantee good results can commit better results. To deal 
with some uncertainties in the system model, an adaptive 
controller is used [7]. The controller is based on fuzzy logic 
to estimate the functions  ( )xF  and ( )xG  that contain the 

nonlinearities of the system. The fuzzy system is a zero-order 
Takagi-Sugeno-Kang (TSK) structure and the adaptive 
controller is implemented in a simulated environment [8],[9]. 
The methodology adopted guarantees the convergence of the 
estimates to their optimal values, and in turn the overall 
stability of the system [10].  
 

II. THE MODEL 

A. Magnetic Levitation System 

In this paper the MLS made by ECP was used and is 
shown in Fig. 1. It comprises two magnetic discs, a glass 
column, two laser sensors and two coils. The sensors are 
used to obtain the system response associated with the disc 
positions. The system input is given by the application of an 
electrical current to the coils. The physical system 
communicates with a computer via Digital Signal Processing 
(DSP) and a black box is responsible for the electrical 
current drivers and the energy supply. 

This MLS can be classified according to two modes, SISO 
(Single Input Single Output) or MIMO (Multiple Input 
Multiple Output) and this depends on the desired system 
configuration. In the SISO mode only one disc is used 
whereas in the MIMO mode two discs are used. Here the 
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MLS was configured to operate in the SISO mode.  
 
 

  
 
The MLS manual [1] shows the mathematic model, based 

on the physical laws, that allows us obtaining its differential 
equation model. The development of the mathematic model 
is beyond the scope of this paper. Through the balance of 
forces, the equation is given by (see [2]): 
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where, 
y  - magnetic disc position 
•
y  - first derivative magnetic disc position 
••
y  - second derivative magnetic disc position 

c   - air viscosity coefficient 
m - magnetic disc mass 

mF - magnetic force applied to the magnetic disc.  

The magnetic force can be written in the following way (see 
[1])  
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where, 
i  - electrical current applied on the coil 

a and b - are constants related with the coil properties. 
By substituting (2) in (1), a nonlinear relationship between 

the magnetic disc position and electrical current applied to 
the coil gives  
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A. Parameter Estimation 

There are five parameters in (3): g, c, m, a and b. The 
parameters g = 9.81 [m/s2], m = 0.12 [Kg] and c = 0.15 

[Ns/m] (from [1]). The parameters a  and b  are constants 
related with magnetic coil properties and must be estimated. 
In [3], the least square and Monte Carlo methods were used 

to estimate a  andb . Accordingly with [3], based on a cost 
function concept, the Monte Carlo method presented the best 
values for these parameters. The values are a = 0.95 and b = 
6.28. These values will be used in this paper. 

III.  THE CONTROL TECHNIQUE 

A. Exact Linearization with State Feedback 

Exact linearization with state feedback can be applied to a 
variety of nonlinear systems, including the MLS studied. The 
control scheme uses the exact linearization technique based 
on the cancellation of nonlinear functions. However, to 
enable the application of the technique, the system dynamic 
must be represented by (see [4])  

 

 uXGXFX )()( +=
•

 (4) 

 
where the functions F(X) and G(X) represent the 
nonlinearities of the states, u is the control system input and 

X is the state vector. Furthermore, two conditions must be 
satisfied. The first one is that the system must be 
controllable. For this first condition the matrix formed by 
vectorial fields in (5) must contain order n, where n is the 
system order (see [5])  
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where Gadn
F is the notation of Lie bracket. 

The second one is that the system be involutive. It means that 
the distribution expressed in (6) also be involutive (see [6])  
 

{ }GadGadGadspan=D 1n
F

1
F

0
F

−...  (6) 

 
where D is the involutive distribution of G(X) expanded in 
Taylor’s series (represented here by the notation span{.}) on 
an equilibrium state X0. The order of D is given by n – 1. 
In order to the distribution in (6) to be involutive, it is 
necessary that the order n of the expression in (7) be equal to 
dim(D) in (6)  
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Once the conditions are satisfied it is possible to 

determine a diffeomorphism Z = T(X). After this, the 
dynamic of the system given by (4) can be transformed into 
the form (see [7])  

 
Fig. 1.  Magnetic Levitation System made by ECP. 
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A feedback control signal u for the nonlinear system is 
chosen in the form in (9) 
 

vZZu )()( βα +=  (9) 
 
where )(Zα  and )(Zβ  represent the states feedbacks. 

Thus, the linear system can be written in the form in (10) 
 

BvAZZ +=
•

 (10) 

 
where v is the input signal for the system after linearization. 
The determination of v will be discussed in next section.  

B. Linearization of the MLS Made by ECP 

The model of the MLS made by ECP was presented in the 
(3) and the two conditions for application of the exact 
linearization were presented in the last subsection. The 
variables of states and the feedback control signal u can be 
set as follows in (11) 

iu =        yx =1        
•

= yx2 . (11) 

 
The dynamic of the system given by (3) can be rewritten in 
the form given in (4) 
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The functions F(X)  and )(XG  that contain the 

nonlinearities of the system can be set as follows  
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The transformation )(XTZ =  can be set in the form given 

by (see [5]) 
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The functions )(Zα  and )(Zβ  can be calculated in the form 

given by 
 

4
12 ))(()( bZcaZmgaZ ++=α  

 
(16) 

4
1 )()( bZmaZ +=β . (17) 

 
Finally, the feedback control signal u  could be rewritten by 
using (16) and (17) 
 

vbZmabZcaZmgau 4
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The application of the feedback control signal u  over the 
system given by (12) will cancel the nonlinearities and the 
system will be transformed into a linear system given by 
(10). In the same way but by using (15) 
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A block diagram was implemented in Matlab Simulink 
which simulates the exact linearization technique applied in 
the MLS, see. Fig. 2 below 

 

IV. THE FUZZY STRUCTURE 

A. Fuzzy Estimators 

A zero-order TSK system with R rules (Fig. 3) is used in 
this paper and has the following form 
 

If 1x  is jA1 ... and nx is j
nA theny is jB , (20) 

 

where [ ] n
n Rxxx ∈= ,...,1  is the input vector, { } j

j
n

j BAA /,...,1  

are the fuzzy set of input and output, respectively, associated 
with a j th rule ( )Rj ,...,1=  and y  is the output of the fuzzy 

system. The output jy is the point which jB  is the 

maximum value ( )( )1=jB y
j

µ  and θ  is the parameter vector 

in the form [ ]R
T yy ,...,1=θ , so the output of the fuzzy system 

is expressed by 
 

( )xWy Tθ=  (21) 

 
Fig. 2.  Block diagram implemented in Matlab/Simulink for the 

exact linearization in the MLS. 
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where ( ) ( ) ( )[ ]xWxWxW R,...1=  and, 

 

( )
( )

( )( )kA
n
k

R
j

kA
n
k

j
x

x
xW

j
k

j
k

µ

µ

11

1

==

=

∏∑

∏
=  (22) 

 
for Rj ,...,1= and ( ) [ ]1,0∈xW , where µ  is the membership 

function 

 
The feedback control signal u expressed in (9) could not 

be implemented because the functions )(Zα and )(Zβ are 

unknown and need to be estimated. However, [8] and [9] 
used fuzzy structures to estimate some functions. The main 
idea here is to construct a fuzzy structure able to generate the 

estimates )ˆ|( αθα Z  and )ˆ|( αθβ Z , where αθ̂  and βθ̂  are 

parameter vectors. So, an adaptive scheme is used here to 
obtain these parameters vectors and (9) can be expressed in 
terms of fuzzy structures in the form below  
 

( )ZWZ T
αα θθα ˆ)ˆ|( =  

 
(23) 

( )ZWZ T
ββ θθβ ˆ)ˆ|( = . (24) 

 

B. Adaptive Control Scheme 

The adaptive control scheme is based on state observers. 
However, the functions )(Zα  and )(Zβ  are substituted by 

the fuzzy estimates, respectively 
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where k  is a gain vector in the form [ ] n
n Rkkk ∈= ,...,1  and 

fZ  is state estimated. There are optimal parameters *
αθ  and 

*
βθ  which are able to estimate the functions )(Zα  and 

)(Zβ , there will also be estimates for optimal states 
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An error of the estimation is set as 
 

[ ]Tnff eeeZZe ,...,, 21
* =−= . (27) 

 

 
 
 
The adaptive laws in the form (see [10]) 
 

( )ZPBWeT
αα γθ −=&̂  

 
(28) 

( )uZPBWeT
ββ γθ −=&̂ , (29) 

 

where αγ  and βγ  are positive constants. 

As regards Lyapunov’s equation expressed in (30), to 

obtain the value of  matrixP  
 

QPPT −=∆+∆  (30) 

Fig. 5.  System response with the adaptive proposed controller and 
step  

 
Fig. 4.  Block diagram in Simulink 

 
Fig. 3.  Fuzzy structure diagram, zero-order TSK. 
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where CkA T+=∆  and Q  is defined a positive matrix. 

Regarding ∆  stable, so there is a unique defined positive 
matrix P  that satisfy (30). Finally, the choice of a defined 
Lyapunov semi-negative for the system, guarantees that the 
error of the estimate e is followed. The application of the 
Barbalat’s lemma cause 0→e  when ∞→t . From  (27), 

0→e implies that *
ff ZZ →  and the convergence of the 

estimated parameters to their optimal values is achieved.  
 

V. SIMULATION RESULTS  

 
The Matlab Simulink was used to simulate a proposed 

controller for the MLS in the present work. The block 
diagram designed in Simulink is shown in Figure 4. The 
model parameters used here were presented in subsection 
II.B. 

The simulations were performed regarding r as a step 
reference signal, with values ranging from a minimum of 0 
cm to a maximum of 3 cm, respectively. In Fig. 5, a 
simulation of the controller response is shown. This was 
obtained by the combination of exact linearization with the 
fuzzy estimates and the step reference signal.  
 
 

CONCLUSION 

In this paper the combination of two techniques to control 
a MLS were presented: exact linearization with states 

feedback and fuzzy logic. It was possible to verify that the 
simulated results show an overshoot in the response of the 
controller. However, these same results show that the 
controller output signal tracks a reference input signal. For 
future work this adaptive controller should be implemented 
in a real physical system.  
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