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Abstract - The present paper shows the development of 
an Artificial Neural Network system for Downhole 
Dynamometer Card pattern recognition in oil well rod 
pump systems. Dynamometer Cards are the main 
diagnostic measure tool in Rod Pump System, which is 
the most popular elevation mechanism used in the oil 
industry. Here it is covered the establishment of pattern 
classes and a set of standards for training and 
validation, the study of descriptors which allow the 
design and the implementation of features extractor, 
training, analysis and finally the validation and 
performance test with a real data base. It is shown that 
the use of artificial neural networks in order to analyze 
the pump mechanic system in oil elevation is feasible. 
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1  INTRODUCTION 

Oil is one of the main assets in the world economy 
and certainly one of the most valuable raw material 
resources of the planet. The oil reserves are found in the 
subsoil and only rarely it has energy to reach the Earth 
surface naturally. Normally it is necessary to raise the 
oil artificially in order to get it.  

The most popular elevation mechanism used in the oil 
industry is the “Rod Pump System”, which is basically 
composed by three elements: the “Pumping Unit”; the 
“Sucker Rod” and the “Pump” itself. The main 
diagnostic measure tool is the “Downhole 
Dynamometer Card” which is formed by the values of 
position of the pumping unit and the pressure in the 
connection junction of the sucker rod and the pump.  

The use of an automatic system for pattern recognition 
of downhole dynamometer cards allows anticipating the 
problems with its earlier identification and therefore to 
take both corrective and prevention measures for it. This 
will bring direct impact in:  
• either increasing or maintaining the oil production 

level;  
• reduction on the energy that is spent;  
• increasing the equipment availability.  

Several works have appeared about mechanisms of 
automatic classification of downhole dynamometer 
cards. However, their results either are limited to a 
reduced number of the anomalies or have low 
performance. [1, 2, 5, 6, 7, 8, 9, 12, 16, 17, 18].  

The present work proposes to investigate in the 
literature a set of classes of anomalies of downhole 
dynamometer cards, to artificially generate one data 
training set, to study the feature extractor’s mechanisms, 
to implement and train Artificial Neural Networks 
(ANN) for recognizing these patterns. Finally, it also 
proposes to test the result with cards obtained from real 
rod pump system systems.  

2  THE PUMP SYSTEM  

The main components of the system, which are 
shown in Figure 1, are: the pumping unit; the sucker 
rod; and the pump itself.  

The pumping unit is normally connected to an electrical 
engine or an internal combustion engine through a 
gearbox of torque transmission which transform the 
spinning movement of the engine into an alternate 
movement at the top of the sucker rod. The sucker rod 
on its hand transmits the mechanical energy received at 
the surface to the pump. Some energy is lost in friction 
during this process.  

Finally, the pump, which is shown in details at Figure 2, 
transmits the mechanical energy received to the 
polyphasic fluid (oil, gas, sediments and water).  

The main components of the pump are the plunger, the 
barrel and the traveling valve and the standing valve. 
They together form the pump system of a positive 
displacement pump type.  

In the downward course the traveling valve opens and 
the standing valve shuts. In this way the weight of the 
fluid column is supported by the sub-set of the standing 
valve and it is transmitted by to the tubing though the 
barrel. The plunger’s interior is flooded by the fluid. 
Plunging the column of rods in the fluid causes a small 
production due to the volume which was shifted.  



Figure 1. The Pump Mechanical System
 

Figure 2. The pump.

 
The Pump Mechanical System. 
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In the upward course the traveling valve shuts and the 
standing valve opens. The fluid shifted by the plunger 
shows up at the surface whereas the barrel is refilled 
through the standing valve. In this way, the weight of 
the fluid in the tubing is transmitted to the columns of 
rods.  
The dynamics described here can be seen as a simple 
harmonic motion of a mass corresponding to the 
columns of rods and the fluid load accumulated at a 
single point.  
That approach is no longer true if, for example, the 
depth increases; or, if the fluid load increases; or, if 
either the friction or the rotation rises; or, if the physical 
properties of the equipments change. These cases 
require a more accurate study on the operational 
conditions and this leads to solving damping wave 
equations to describe the motion.  
Barreto Filho presents in [3] a detailed study on the rod 
pump system and proposes an algorithm to compute the 
mechanical strengths on the sub-surface (at the bottom) 
from measurements conducted on the surface.  

2.1  Monitoring the System 

The periodic evaluation of the system is done 
through [4]:  

a) Plunging the pump: determined by the level of the 
dynamic level, which corresponds to the height of the 
fluid above it during production (Sonolog register).  

b) Downhole dynamometer card: obtained by the 
readings of the rod displacement and its corresponding 
traction force.  

c) Other indicators obtained through production 
tests, or verifying the temperature of the rods, or also 
pressurization tests of the equipment.  

2.2  The Downhole Dynamometer Card 

The downhole dynamometer card is the main tool, 
and also the richest device, for monitoring the system. It 
was created in 1936 when Walton E. Gilbert published 
his work [14] that describes the its use for diagnosing 
the rod pump system.  
Actually the device created by Gilbert was set up just 
above the pump on the sub-surface, which somehow 
restricted the technical application.  
As a matter of fact the paper establishes graphic forms 
of the dynamometer cards associated to the system’s 
anomalies.  
To better diagnose the working conditions of the rod 
pump system several papers have appeared later, 
pointing out to the pioneer work of Gibbs [13] that used 
mathematical modeling and computer techniques to 
determine the conditions on the sub-surface from 
measurements conducted on the surface.  
Eickmeier in [10] presents the Delta II dynamometer 
and its corresponding data analysis. Electronic sensors 

arranged as a load cell and a potentiometer are used 
together with analogical recording.  
Several schemes have been done in order to get an 
automatic diagnostic for the downhole dynamometer 
cards using both statistical and syntactic methods, 
artificial neural networks (ANN), or even symbolic 
neural networks [5]. By doing a bibliographic search 
one can establish a wide set of classes that are used for 
pattern recognition of the downhole dynamometer card 
behavior (Table 1).  

3  METHODOLOGY 

3.1  Pattern Recognition  

The proposed process for pattern recognition of an 
occurrence has two stages: The first stage is the data 
acquisition, which is presently accomplished by field 
instrumentation and its corresponding processing 
(Figure 3), where a computational solution for the 
model, as described in section 2.3, transforms a surface 
dynamometer card, which is formed by values of 
displacement and tension of the rods acquired by using 
sensors that are placed on the surface equipment, into a 
downhole dynamometer card, which is also a set of 
displacement and tension values, but, however, 
conceived for the position corresponding to the junction 
between the column of rods and the plunger.  

  

Figure 3. Data acquisition and signal processing.  

At this point, since the downhole dynamometer cards 
from different wells have some variation interval 
between rod tensions and also some different 
displacements, there is a need for normalizing the 
values.  
The second stage the tool for pattern recognition itself 
(Figure 4), which has two parts [11]:  

1st) the feature extraction, which does the a 
transformation of the vector X from an observation 
space of dimension ‘m’, which is the downhole 
dynamometer cards data, into the characteristic space of 
dimension ‘q’, where q < m, in order to simplify the 
classification task.  

2nd) the classifier, comprised of a ANN that 
associates the vector of characteristics Y of dimension 
‘q’ into one of the classes of the decision space which 
has dimension ‘r’.  
  



 

Figure 4. Characteristic Extractor and Classifier (ANN). 

 

Figure 5. Simplified model. 

3.2  Characteristic Extractor  

The Characteristic Extractor has two approaches 
[15], the first being to eliminate the redundant 
information and the second being the linear or nonlinear 
transformation into the observation space dimension.  
There are some factors that make the design of the 
Characteristic Extractor easier:  

a) The downhole dynamometer cards are not 
subject to rotation and therefore, one can use histograms 
to extract characteristics.  

b) The downhole dynamometer cards have a 
borderline which is closed and periodic, one can use 
Fourier descriptors here.  

c) The data normalization process eliminates the 
translation and scale effects.  

d) There is no overlap of other signals which might 
interfere with data.  

3.3  Classifier 

Here, the proposed scheme is a multiple layers feed 
forward ANN with a supervised training device [11].  

3.4  Training and Tests 

As for the training the proposed structure is to generate 
artificially a set of standards using the class models as 
shown in Table 1, with a random noise introduced. One 
has to be aware of generating the same number of 
standards for each type of class.  
In this way, with a typical image of a normalized 
downhole dynamometer cards, the pair of values, 
position and traction are obtained.  
In order to have an approximation closer to reality, 
where the values of the cards are attained by sampling 
in regular time intervals, a simplification was 
conducted, where the sucker rod motion is the vertical 
projection of a point in simple harmonic motion (Figure 
5) with a constant angular velocity.  
Assuming that a complete period N samples are 
introduced; one has that, for the nth sample:  
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It is interesting to notice that the variation rate of the 
position of the samples with respect to the variation 
angle can be expressed by:  
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This gives a small variation in the position of the 
samples at the beginning and at the end of the ascending 
and descending courses (xnin and xmax) that reflects in a 
more detailed view. Here it is used N ? 100 for the 
forward angle ∆θ = 0.0628 rd, or 3.6º.  

4  RESULTS AND DISCUSSION 

Initially, an application was done with the aim of 
using the proposed methodology to a set of 6,101 cards 
from real oil wells and each one composed of a set of 
100 points, which were previously classified by a 
human expert.  



a)  Normal operation = 1843.  

b)  Fluid pound = 4123.  

c)  Gas Interference = 15.  

d)  Leaking standing valve = 78.  

e)  Plunger hitting top = 42.  

4.1  Set of Artificial Standards 

The first step to obtain the artificial standards was 
to generate an image set in bit map, based on models, 
and using image manipulation software (Photoshop ver. 
8.0.1). Figure 6 illustrate a set of 4 images that 
represents the class of cards with fluid pound and in 
situations ranging from small to large gravity.  

A set of 100 points was obtained from each image. 
These points are arranged in values of position (x axis) 
and traction (y axis), where half of them establishes the 
ascending curve of the pump whereas the other half 
forms the descending curve of the pump.  

 

Figure 6. Bit maps from some fluid pound models. 

These sets have been normalized:  
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After normalization a white noise was added to the x 
axis. Since these values, after being added by noise, can 
go over the unit, they have to undergo to a second 
normalization. Figure 7 shows the overlapping of 300 
artificial downhole dynamometer cards.  
On the other hand Figure 8 shows a comparison 
between the distances of successive x axis of points 
obtained artificially (Figure 8a) and from real cards 
(Figure 8b). The graph shows the form  

Δ�!"�Δ����# � Δ����$ 

as a function of the position xn on a complete period 
( n ∈ [1 , 100] ). One can observe that the minimal 
variation occurs on the limits of the periodic motion 
(around n = 1, n = 50 and n = 100) whereas the 
maximum variation occurs on the intermediate points 
(around n = 25 and n = 75).  

 
Figure 7. Set of artificial standards for cards with fluid 

pound.  

 
Figure 8. Distances between successive x axis. 

By using these techniques two sets of artificial cards 
were generated: one for the training of the network and 
another one for the validation. Each of these sets 
consists in 8 different classes with 300 downhole 
dynamometer artificial cards by each class. These 8 
classes are a subset of the ones shown in Table 1: 



normal operation, fluid pound, gas interference, stuck 
piston, leaking standing valve, leaking traveling valve, 
plunger hitting top and plunger hitting bottom.  

4.2  Characteristic Extractor  

Here a characteristic extractor that uses vertical 
projections of the ascending and descending curves was 
used. This is shown in Figure 9. Acceptable results were 
obtained with a set of 16 projections of the descending 
curve and also 16 projections of the ascending curve.  

 
Figure 9. Characteristic extractor.  

This allowed a reduction of the dimension of the space 
from 200 (corresponding to 100 pairs of values of 
potion and traction) to just 32. 
Figure 10 shows the output of the 32 outcomes from the 
plunger hitting top for the several families of artificial 
downhole dynamometer cards.  

 
Figure 10. Output of the characteristic extractor.  

One can verify that each family of artificial downhole 
dynamometer cards holds a well-defined recognizable 
signature.  

4.3  Classifier Results  

Several tests were carried out and the results 
achieved were satisfactory. The ANN type used was 
feed forward with 32 inputs, 16 neurons in the hidden 
layer and 8 neurons at the possible output layer. 
Sigmoid transfer function was used in the two last 
layers.  

Figure 11 shows the network training results, for which 
it was used the algorithm TRAINGDX.  

After the training the network validation was performed 
using now the second set of artificial cards with 100% 
correct results.  

For the final test the 6101 real downhole dynamometer 
cards were used and the following result was achieved:  

a) 11 card were not classified since the neurons at 
the output layer held values below the limit established 
by the criteria (0,1).  

b) 69 cards were wrongly classified. However, from 
these 69 cards, 30 of them were cards pre-diagnosed as 
“plunger hitting top” when in fact they were “normal”  

 
Figure 11. Training results from the ANN classifier. 

When the above results were shown to a human expert, 
he observed that he would have considered as an 
acceptable diagnosis produced by the artificial neural 
network. That represents a considerable improvement in 
the results.  

Summing it up, from the 6,101 cards which were tested, 
the total classification error was found to be 1,31%.  



 

Figure 12. Error analysis in the classification. 

5  CONCLUSIONS  

The present work shows that the generation of artificial 
standards for training neural networks in order to 
analyze the pump mechanic system in oil elevation is 
feasible. The results shown here leave open the 
possibility of creating a scheme that not only 
incorporate the complete set of classes of anomalies, but 
which is also able to integrate the data base of real 
automation systems. 
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