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Abstract 
Optimisation theory has been used to determine drug doses to control the clinical evolution of the 
HIV seropositive patients. Generally, the assessment to clinical conditions for that kind of patients 
involves several factors, including some conflicting ones. Due to this fact, the present work pro-
poses the use of multiobjective optimization techniques. More specifically, the drug doses used to 
treat patients with AIDS are found by aiming at to maximize, simultaneously, the count of CD4+T 
cells, to minimize the viral load and the side effects. The side effect is modelled by a dose depend-
ent damage term. The treatment on the other hand, requires a combination of two classes of drugs: 
reverse transcriptase and protease inhibitors. These drugs’ effects are then modelled by a set of non-
linear ordinary differential equations. In addition, the optimization process involves restrictions on 
the various variables in the form of inequalities. The results compares favourably with those ob-
tained by using a single performance criterion. 

 
 

1. INTRODUCTION 

In 2005, there were 40.3 millions of human beings living 
with HIV in the world living with HIV in the world 
(UNAIDS, 2005). This shows how important it is the study 
and the development of news techniques to combat AIDS.  
The use of optimal control theory in biomedical problems 
has received increasing attention in the last years. The main 
objective is to select a control law (i.e., “a treatment 
scheme”) such that the controlled dynamic system (i.e., 
“the infected organism”) reacts in such a way that mini-
mizes a cost (“an actual cost of the treatment plus the in-
tensity of the side effects”) or maximizes the therapeutic ef-
ficiency (which is indicated by the reduction of the viral 
load for instance).  
In the literature several mathematical models that describe 
the clinical evolution HIV seropositive patients can be 
found, such as, for example: (Perelson, 1989), (Nowak and 
Bangham, 1996) and (Tan and Wu, 1998). This work is 
based on a simplified version of the latter, which has four 
differential equations representing the uninfected CD4+T 
cells, latent infected CD4+T cells, active infected cells 
CD4+T and free HIV viruses, respectively.  
One way to obstruct the viral replication is associated to the 
following drugs: reverse transcriptase inhibitors (AZT, 
DDI, 3TC) and protease inhibitors (Saquinavir, Indinavir, 
Ritonavir). The high amount doses of these drugs during 
the treatment can cause some side effects such as diarrhoea, 
vomiting, nauseas coetaneous rash, abdominal girth and 
abdominal fullness (Mittler et al, 1998).  
This work optimises the doses of reverse transcriptase and 
protease inhibitors, keeping the patient in a satisfactory 
clinical region, that is, increasing the count of uninfected 
CD4+T cells and decreasing the count of viral particles. In 
order was used to attain this, multiobjective optimization 
techniques were used, where the goal is to minimize “in the 

best possible way” the various objective functions. In gen-
eral, the problem does not have a unique optimal solution 
that could optimize all objectives simultaneously. Instead, 
there exists a set of equally efficient, or non-inferior, alter-
native solution, kwon as the Pareto-optimal set (Liu et al., 
2003).  
To find one and only one solution, here it was used the in-
teractive method known as Fandel method, which the goal 
is to transform the problem so that it turns into a mono-ob-
jective optimization problem, associating a weight to every 
objective function and then take a weighted sum of all ob-
jective functions. Hence a new and unique objective func-
tion is obtained.  
The results obtained through of the multiobjective optimal 
control are compared to a scheme of treatment where high 
drug dosages are used, with the knowledge that these re-
sults can be improved with the use of more realistic cost 
functions or the inclusion of alternative forms of HIV in-
fection treatments.  
 
 

2. MATHEMATICAL DYNAMIC MODEL OF AIDS 

The use of mathematical models, especially in the field of 
immunology, has produced important results in the clinical 
care of AIDS patients (Asachenkov et al., 1994), (Cherru-
alt, 1986), (Levin et al., 1997).  
Models for HIV infection dynamics can be found in 
(Nowak et al., 1991), (Perelson et al., 1993), (Murray et al, 
1998), (Tan and Xiang, 1999) among others. 
The mathematical model used in this work is a simplifica-
tion of a more general one by (Tan and Wu, 1998) that in-
cludes stochastic terms. The model consists in a set of four 
differential equations, given by:  
 

     

mailto:felippe@ubi.pt
mailto:jmgregio@ita.br
mailto:marcoalc1@isp.edu.br
mailto:takashi@ita.br


  
 

 

( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( ){ }
( )

( )

( )( ) ( ) ( )

( ) ( )( ){ }

( ) ( ) ( )( ) ( ) ( )

( )( ) ( ) ( )

( ) ( ) ( )

( ) ( )( ) ( ){ vtxtmktx

txtN
dt

tdx

txtxtmk

txtxtmk
dt

tdx

tmktx

txtxtmk
dt

tdx

txtmktx

txtx,tx,txtxS
dt

tdx

μ+−

+μ=

μ−+

+ω−=

+μ−

+ω=

+μ−

+λ+=

1114

33
4

33222

1411
3

2222

1411
2

41111

13214
1

1

}

( )( ) ( )

  (1) 

 
 
where the parameters S, λ, N are given by: 
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where  
x1(t) = uninfected cells CD4+T;  
x2(t) = latently infected cells CD4+T ;  
x3(t) = active infected cells CD4+T;  
x4(t) = free virus HIV;  
s: rate of generation of x1 from precursors;  
r: rate of stimulated growth of x1;  
Tmax: maximum CD4+T  cells population level;  
μ1: death rate of x1;  
μ2: death rate of x2;  
μ3: death rate of x3;  
μv: death rate of x4;  
k1: infection rate;  
k2: conversion rate from x2 to x3;  
N(β1, β2, N0): number of infectious virus produced by an 
actively infected CD4+T cell and that depends on constants 
β1, β2 and N0;  
θ: viral concentration needed to decrease by s.  

Figure 1 shows the scheme of the model described in the 
equations (1) – (4) and the relations of variables and pa-
rameters. 

Fig. 1. Dynamic Model of Cycle HIV 
 
The T cells are generated in the bone marrow and thymus. 
Accordingly to Tan (Tan and Wu, 1998) in presence of an-
tigen and HIV, x1 cells are stimulated to proliferate gener-
ating new x1 cells with rate λ. Without the presence of 
HIV, the rate of generation is S(x4). 
In the presence of HIV, uninfected cells x1 can be infected 
to become either x2 cells or x3 cells, depending of probabil-
ity of cells become either actively or latently infected with 
rate ω. The x2 cells can be activated to become x3 cells with 
rate k2. The x3 cells are short lived and will normally be 
killed upon activation with death rate μ3. When x3 cells 
dies, free viruses x4 are released with rate N(t). The x1, x2 
cells and x4 free virus have finite life and the death rates are 
μ1, μ2 and μv, respectively.  
There are two important enzymes in this process: the “re-
serve transcriptase” and the “protease”. The two forms of 
controlling the generation of new free virus are precisely 
by stopping each of these enzymes.  
“Reserve transcriptase” is an enzyme that the HIV virus 
uses to translate its RNA genetic material into DNA, and 
thus allowing its integration to the host cell. On the other 
hand, the “protease” is an enzyme responsible for the 
maturation of the HIV virus producing copies of it itself, 
capable to infect new cells.  
So, the first method to control the generation of new free is 
to block the “reverse transcriptase” enzyme whereas the 
second one is to block the “protease” enzyme.  
Both coefficients k1 and k2 are functions of the adminis-
tered drugs that will obstruct the actions of each of these 
enzymes:  
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where m1 and m2 are, the doses of transcriptase and prote-
ase inhibitors respectively; k10 and k20 are initial values for 
the infection without drugs; αi efficiency of drugs.  

     



  
 

3. OPTIMIZATION OF DRUG DOSES 

In optimization problems one or more objective function, 
or cost function, are defined. This objective function is to 
be either minimized or maximized considering some con-
straints, which all the parameters of the proposed solution 
must satisfy in order to be feasible.  

So, the aim of optimal control theory is to determine the 
control signals for which a process will satisfy its physical 
constraints, as well as, to minimize (or maximize) some 
performance criterion.  

The formulation of an optimal control problem (Kirk, 
1970) requires: 

- A mathematical description (or model) of the process to 
be controlled.  

- A statement of the physical constraints.  

- Specification of the performance criteria.  
 

3.1  Multiobjective Optimization  

The main difficulty normally found in mono-objective 
comes from the fact that modelling a problem with just one 
equation can be a very difficult task. Modelling the prob-
lem using just one equation could also introduce a bias 
during the modelling phase.  

Multiobjective optimization allows a certain degree of 
freedom that lacks in mono-objective optimization. In a 
multicriterion optimization problem, the search will give us 
not a unique solution only, but a set of solutions. These 
solutions are called Pareto solutions, and the set of solu-
tions found at the end of the search is called the “trade-off” 
surface.  

After having found some solutions for the multiobjective 
optimization problem, one must select a solution from this 
set. Here, this selection is made through of the Fandel 
method.  

A multiobjective optimization problem has the following 
form:  

   (6) 

( )

=

≤

0

0

)x

)x

x

( ) kxf ℜ∈

⎪
⎪
⎩

⎪⎪
⎨

⎧

(hand

gwith

fmin

nx ℜ∈

(

where , , ( ) mxg ℜ∈  and ( ) pxh ℜ∈ . Also, 
the vectors (g )x  and (xh )  represent a set of m inequality 
constraints and p equality constraints, respectively. This set 
of constraints delimits a restricted subspace to be searched 
for the optimal solution. The vector ( )xf  represents k func-
tions to be optimized. 

The goal to be reached during the solution of the multiob-
jective optimization problem is to minimize “in the best 
way possible” the various objective functions. In multicri-
terion optimization problem, we often have contradictory 
objectives, that is, when a decrease in one objective func-

tion leads somehow to an increase in another objective 
function.  
When the multiobjective optimization problem is solved, 
then a multiplicity of solutions is found, but hopefully one 
should end with one, and only one, solution.  
In order to find this solution, one must first to restrict the 
search to a subset of interest solutions, for this we must es-
tablish a domination relation between the solution consid-
ered and the other solution.  
We say that a vector 1x  dominates a vector 2x  if 1x  is as 
good as 2x  for all objectives, and  is strictly better than 1x

2x  in at least one objective (Miettinen, 1998; Ehrgott, 
2000).  

Solutions which dominate the others but do not dominate 
themselves are called optimal solutions in the Pareto sense 
(or non dominated solutions).  
 

3.2  Fandel Method 

The problem is modified in the following way:  

   (7) 
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Also: wi ≥ 0 and  

. 
In order to obtain these coefficients wi, one should proceed 
(Collette and Siarry, 2003) as follows:  

At the first step, the minimum value for each of the objec-
tive functions (which is denoted by ) satisfying the con-
straints is calculated (and is denoted by ). This equiva-
lent to solve the following problem:  
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with j = {1, 2, …, k}. The solution of this problem is de-
noted by ∗

jx  and the value of the vector of objective func-
tions corresponding to this solution is denoted by 

( )*
j

j xff =∗ .  

Next, the vector of the values of the ideal objective func-
tion is constructed:  

 ( T
kf,...,ff 1= )   (9) 

and matrix B:  

 ( )k*f,...,fB 1∗=   (10) 

     



  
 
The ideal objective function is obtained by minimizing 
each objective function separately.  

At step M, the user will reach a solution which will be 
close to the ideal solution. Here, a vector  which will 
serve to reduce the size of the search space was calculated 
in the following way:  
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Now, the size of the search space is reduced by using the 
constraints boundaries. The new space of constraints is de-
noted by Ŷ
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In this new constraint space, the objective functions are 
minimized:  
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And then one returns to the first step.  

The loop stops when converge to the only solution is 
reached.  
 
 
 

4. PROBLEM FORMULATION 

This work uses multiobjective optimization techniques in 
therapy of AIDS with the aim of maximizing the count of 
uninfected CD4+T cells and minimize the count of free vi-
rus, while evaluates simultaneously the dosages of drugs, 
that are not indirectly related with the treatment side ef-
fects. The optimization problem is the following:  
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with  

   

 

where:  

tf is the final time of simulation;  

φ is the weight of x4 in relation x1;  

φi are weights to force the control be the local minimum in 
the administration of drugs (the larger these parameters 
are, the smaller is the administration of drugs in order to 
not increase the objective function’s value);  

εi are the importance of the drugs during the treatment re-
flected in the objective function (if these parameters are 
large, then the drug efficiency is high).  

 
The constraints mean that the drug dosage must be less 
than or equal to the dosage adopted and recommended by 
the World Health Organization (WHO). 
 
The count of uninfected CD4+T cells in final phase of the 
treatment must be greater than its count in the initial phase 
of treatment.  
 
Also, the count of free virus in the final stage of the treat-
ment must be less than its count in the initial stage of 
treatment.  
 
With this an optimal strategy of treatment for HIV sero-
positive patients can be achieved, as it will be shown in the 
next section.  
 
 
 

5. SIMULATION RESULTS 

In order to present a realistic example, the data belonging 
to Patient A in (Pontesilli et al., 1999) was used. The nu-
merical values for the model parameters of Patient A are 
shown in Table 1.  
 
 

Table 1. Model parameters used in the numerical 
simulations (Patient A)  

s = 10 r = 0.52 Tmax = 1700 

μ1 = 0.4 μ2 = 0.5 μ3 = 0.03 

μv = 2.4 k10 = 2.4×10-6 k20 = 0.3 

N0 = 1400 β1 = 0.1 β2 = 65470 

α1 = 5×10-3 α2 = 5×10-3 θ = 106 

ω = 0.5 φ1 = 1 φ2 = 1 

ε1 = 10-6 ε2 = 10-6 x1(0) = 357 

x2(0) = 10 x3(0) = 100 x4(0) = 133352 
 

     



  
 
For the two optimization procedures shown below, the final 
time (tf) was fixed in 224 days and the weight φ was con-
sidered to be 0.01.  
 
Figure 2 shows the optimal control using m1 = 900 mg and 
m2 = 1200 mg, dosages which are adopted and recom-
mended by the World Health Organization (WHO).  
 

 

Fig. 2. Uninfected CD4+T cells count and free virus count 
for treatment with m1 = 900 mg and m2 = 1200 mg.  

Here the following results were obtained:  

x1(tf) ≈ 463 
x4(tf) ≈ 104 

f1(m1, m2) = -461.96 
f2(m1, m2) = -4.4686 

 
On the other hand, by applying, the multiobjective optimal 
control, the following trade-off surface shown in the figure 
3 was found.  
 

 

Fig. 3. Trade-off surface (non-dominated solutions) 

 
Applying the Fandel Method, it is found that m1 = 824 mg 
and m2 = 362 mg. For these values of m1 and m2, the opti-
mal control results are shown in figure 4.  

Here one has that:  
x1(tf) ≈ 459 

x4(tf) ≈ 1455 

f1(m1, m2) = -444.45 

f2(m1, m2) = -1.1118 
 

 

Fig. 4. Uninfected CD4+T cells count and free virus count 
for treatment with m1 = 824 mg and m2 = 362 mg. 

Comparing figures 2 and 4, one can verify that these results 
are very similar.  
They neither show a significant decline in the count of un-
infected CD4+T cells nor they have any increase in the 
count of free virus.  
So, the scheme proposed here is much better since one uses 
less medication and, as a consequence of that, a reduction 
of the side effects.  
 
 
 

6. CONCLUSIONS 

The aim of this work is to present a quantitative method to 
assist the medical staff in conducting clinical treatment 
schemes for patients with AIDS. The positive results such 
as the increase in the CD4+T count and reduction in the 
level of viral particles can be balanced with dose dependent 
side effect of the drugs.  

This is done by using multiobjective optimization tech-
niques, since multiple criterions must be satisfied.  

One can observe, through of the optimal control procedures 
tested here, that with less drugs dosages it is possible to in-
crease the count of uninfected CD4+T cells to the same 
level of that when high amount drugs dosages are used.  

These results can still be improved by using more realistic 
cost functions, or more elaborate mathematical models, or 
also to include alternative forms of HIV virus infection 
treatments.  
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