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ABSTRACT 
This paper presents a study on nonlinear control systems 
based on differential geometry. A brief introduction about 
controllability and involutivity will be presented. As an 
example, the exact feedback linearization and the 
approximate feedback linearization are used in order to 
show some application examples. 
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1.  Introduction 
 
The theory of nonlinear control systems have been 
receiving an increasing attention in the recent years, since 
it usually provides a better approach for real systems as 
well as better results than the linear approach. A lot of 
successful application examples can be found in strategic 
areas such as: aerospace, chemical and petrochemical 
industry, bioengineering and robotics.  
 
“Nonlinear control systems” is a subject that deals with 
the analysis and the design of nonlinear control systems, 
i.e., the analysis and the design of control system that 
contains at least one nonlinear component [1]. The classic 
methods used in the study of the linear systems, 
particularly the frequency analysis, are not applicable to 
nonlinear systems [2]. Thus, different approaches are 
required in order to treat nonlinear systems. Even when 
considering a linear approach, if the required operation 
range gets larger, a linear controller may fail. It may 
become unstable or decrease the desired control 
performance. In these cases, techniques of nonlinear 
control may provide better performance. Examples of 
possible approaches may consider the system linearization 
around operation points and provide a gain schedule as 
well as a parameters adaptation (adaptive control). The 
exact feedback linearization and the approximate 
feedback linearization use a negative feedback signal that 
makes the closed loop system to have a linear behavior 
[1]. The present work consists of detailing with these two 
last techniques. 
 
 

2.  Using a Geometric Nonlinear Control to 
Analyse Necessary and Suficient Conditions 
To Feedback Linearization   
 
The main objective of this paper is to provide an explicit 
and simple stabilizing controller for single-input single 
output nonlinear systems using the geometric nonlinear 
control for the exact feedback linearization and 
approximate feedback linearization.  
 
Consider a standard smooth nonlinear control system 
affine in the input )(tu  given by: 

 
                          ug(x)f(x)x +=&                           (1) 

 
Where f(x) and g(x)are ∞C  vector fields and nR∈x& . 
The system in the form (1) is said to be input-state 
linearizable if there exists a region Ω  in nR , such that 
the following conditions hold: 
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3.  Exact Feedback Linearization 
 
If the conditions (2) and (3) are satisfied, then it is 
possible find a scalar function (x)φ  such that 
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Where the (x)φ , define a state transformation by 
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An input control signal is than proposed as: 
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Such that the closed-loop system in its new co-ordinates is 
described by a linear differential equation 
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 A and b are in the Brunovski canonical form. However, 

the generality is not lost since any representation of a 
linear controllable system is equivalent to the Brunovsky 
canonical form (4) through a state transformation. 
 
 
3. Linearization of Pendulum System 
 
Figure 1 gives a general view of the pendulum system, It 
considers a pendulum with a suspension held by a rigid 
connection rod (figure 1), being able to oscillate around 
this point. The pendulum is being excited by a force u . 
 

 
Figure 1. Pendulum   

 
The model of this pendulum is given by:  
 

       21 xx =&                   (10) 
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Where g , l , m , b , 1x , 2x  are respectively the gravity 
acceleration, the length of the rod, the mass, the friction 
coefficients, the rotation angle and the angular speed. It is 
not difficult to verify that the conditions (1) and (2) are 
satisfied for this system. A suitable transfer function 

11 xT =  can be found, and the coordinate and input the 
transformation are obtained by 
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Then, a set of linear equations is achieved in order to 
represent the closed loop system. 
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The block diagram of the system is represented as 
 

 
Figure 2. Controller Structure 

 
The design’s concept is reflected by the two-loop 
structure of the controller. In the first step, the design 
seeks nonlinear compensation, which explicitly eliminates 
the nonlinearities present in the system. The second step 
is the design of a linear controller to the system.  
 



4. Approximate Feedback Linearization  
 
In this section, a higher order approximate linearization is 
considered and the technique is then proposed to be 
applied to the inverted pendulum system. Notice that this 
system cannot be exactly linearizable since the model of 
the inverted pendulum fails to satisfy the involutivity 
condition [4], [5], [6]. Thus, an approximate linearization 
approach is proposed. 
 
The inverted pendulum control, Figure 2, is a classical 
educational problem which consists in a balancing pole 
built on the top of a one-dimensional movable cart. [5], 
[6]. 
 

 
Figure 3.Inverted Pendulum 

 
Consider the following single-input nonlinear system 
 
 u)(+)(= xgxfx&                   (16) 

 
Letting xx =1 , 12 xx &= , θ=3x , θ&=4x , the equations 
of motion can be written as [6]  
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For order 1 involutivity, there must exist coefficients 

)( 0xcij  
such that constant term 
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annihilated [7], i.e. 

 
 0xcxD-xx 000 =)()()( ijIij   (19) 
Where 
 
 )](,[ xxxx jiij =   (20) 
 
And 
 

 g}g{g, n-
ff

2,..., adadDI =    (21) 
 
Note that this is a linear problem. Thus, this system is 
order 1 involutivity. There are no solutions for order 2 
involutivity.  
As the system is order 1 involutive, then 1λ  can be 
obtained by solving 
 
   0D01 =∇λ   (22) 

 
Obtaining 
 
 [ ]T01011 =∇λ      (23) 

 
Once 1λ  has been computed, the remaining states and 
control transformations are obtained from [8] 
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The last column in the right hand side of (24) represents 
the neglected terms in the transformed system.  
 
The equation (24) put the input control transformation as 
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Where, 
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They lead to an approximated linearized system as   
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Where, 
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5. Conclusion  
 
Here we have designed a nonlinear controller for a 
pendulum systems based on the exact feedback 
linearization and the inverted pendulum systems based on 
the approximate linearization technique using a 
differential geometric to calculate the state transformation 
and input transformation.  
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