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Abstract  
 The present work presents some numerical procedures 
in order to estimate the right drug doses in the treatment of 
AIDS based on the Optimal Control Theory and using a 
mathematical model for the viral load and the number of 
CD4+ T cells. The optimal solution is then compared in 
terms of the clinical response obtained using sub-optimal 
doses and fixed doses. The sub-optimal doses are found by a 
search method applied to the coefficients of a series 
approximation of the admissible doses function. The 
parameters of the mathematical model used in the computer 
simulations were adjusted to fit actual clinical data. The 
sensitivity of the proposed procedure is evaluated by a 
Monte Carlo type method where random uncertainties of up 
to 10% are added to the model parameters.  
 
 
1. INTRODUCTION  
 
 Mathematical models have been extremely valuable in 
the research of dynamical phenomena related to a variety of 
biological systems. The increase in the cases of AIDS has 
brought a lot of effort to find new mathematical models in 
order to try to describe the temporal variation of the HIV 
load or the number of CD4+ T cells. Works on this topic 
have focused on analyzing the effects of the drug 
administration strategies [Mittler et al. 1998, Murray et al. 
1998 and Wick 1999] along the time.  
 
 Mathematical models that provide quantitative 
descriptions of the dynamics exhibited by AIDS were, 
among others, derived by Nowak [Nowak and Bangham 
1996], Phillips [Phillips 1996], Perelson [Perelson and 
Nelson 1993] and Tan [Tan and Wu 1998]. Extended 
versions of these mathematical models have been used to 
optimize the drug doses required in the treatment. The 
particular model used in this work was originally proposed 
by Tan [Tan and Wu 1998], and is similar to that appearing 
in Perelson [Perelson and Nelson 1993].  
 
Previous work [Caetano and Yoneyama 1999a] has shown 
that it is possible to improve the effectiveness of the 
treatment by using a closed loop drug administration 

strategy. The improvements were related to the fact that 
more information was used in the process of tuning the drug 
doses, when compared to standard constant dose treatment 
schemes. Moreover, it was also shown (by computer 
simulation) that it is possible to use the optimal control 
theory to take into account the adverse side effects during a 
short term treatment scheme [Kirschner et al 1997, Joshi 
2002, Caetano and Yoneyama 1999b]. Also, in another 
work, a locally optimal control, using a linearized model 
and the linear-quadratic regulator theory, was combined 
with standard fixed dose treatment to achieve an improved 
balance between the therapeutic and side effects [Caetano 
and Yoneyama 2002].  
 
 The aim of the present study is to analyze the dynamics 
of the viral load and the number of CD4+ T cells under 
different treatment schemes, including the optimal one, 
using a dynamic model fitted to actual data. The actual data 
used to tune the model parameters were provided by the 
Centro de Referência e Treinamento em DST-AIDS at São 
Paulo. The mathematical model comprises four differential 
equations representing the dynamics of uninfected CD4+ T 
cells, latently infected CD4+ T cells, actively infected 
CD4+ T cells and free viruses. A cost function was 
proposed to express, in a quantitative manner, the 
compromise between the therapeutic outcomes and the 
intensity of side-effects. A numerical technique was then 
used to solve the optimal control problem. The optimal 
results were compared to those corresponding to the 
suboptimal solution, where a series expansion type 
approximation is used, and to the constant-doses treatment 
scheme.  
 
 
2. METHODS  
 
2.1. The Mathematical Model  
 
 The model in Tan [Tan and Wu 1998] describes the 
clinical evolution of patients infected by HIV. The original 
model comprises four differential equations involving 
variables with stochastic terms. Here, the mathematical 
model was simplified by eliminating these stochastic terms. 
The dynamics is then described by the differential equations  
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where dtdxx =&  represents the time derivative and the 
values from parameters of dynamic system are obtained by 
relations:  
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with  

≡= )(11 txx uninfected CD4+ T cells;  

≡= )(22 txx latently infected CD4+ T cells;  

≡= )(33 txx active infected CD4+ T cells; and  

≡= )(44 txx free virus HIV;  

 The parameters are s = the rate of generation of x1 from 
precursors; r = rate of stimulated growth of x1; Tmax = 
maximum T cells population level; µi = death rate of xi ; N 
= the number of infectious virions produced by an actively 
infected T cell; =θ  viral concentration needed to decrease 
s. The function k1( ) depend on the drug doses m  
 

k1(m) = k10 e-α m  
 
and is related to the conversion rate of uninfected CD4+ T 
cell to latently infected CD4+ T cell by contact with viruses.  
 
 Examples of drugs that affect the dynamics via function 
k1 are the reverse transcriptase inhibitors: zidovudine, ddI, 
3TC and lamivudine.  
 
 Intuitively, one can say that x1 cells are stimulated to 
proliferate with rate λ(x1, x2, x3) in the presence of antigen 
and HIV.  
 Without the presence of HIV, the rate of generation is 
S(x4). In the presence of free HIV (x4), uninfected cells x1 
can be infected to become x2 cells or x3 cells, depending on 

the probability of these cells (x1) to become actively (x3) or 
latently infected (x2) cells with rate ω.  

 However, the x2 cells can also be activated to become x3 
cells. The x3 cells are short living and will normally be 
killed upon activation with death rate µ3. The x1, x2 cells and 
x4 free viruses have finite life and the death rates in this 
model are µ1, µ2 and µ3 respectively. The x3 cells release 
free viruses x4 with rate N(t) as described by equation (4).  
 
 
2.2. The Optimal Control  
 
 The standard treatment schemes use constant drug 
doses according to tables recommended by the World 
Health Organization. The doses are adjusted from time to 
time depending on the clinical evolution of the particular 
patient.  
 
 Here, in the present work the doses are to be adjusted 
dynamically using optimal control theory.  
 
 The main problem of optimal control is to find a control 
input m(t) that minimizes the cost function  
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where t0 and tf are the initial and final times, respectively, 
fixed a priori. The functions h and g are required to be 
bounded and positive. The state x( ) and m( ) are required to 
satisfy the state equations  

))t(m),t(x(fx =&  

 In the specific problem treated here, f( ) is given by the 
equations (1-4).  
 The cost function try to quantify the side-effects that are 
related to the drug doses while also taking into account the 
clinical conditions as reflected by the values of CD4 counts 
and viral load. An index that was used in previous work by 
the authors [Caetano and Yoneyama 2002] with satisfactory 
results is given by  
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 An heuristic interpretation of the proposed cost 
functional is that the first term in the integral represents the 
side-effects. When m = 0,  

( ) 11 11
1 =ε−φ α− )t(me)t(m  



and the side effect is proportional to φ, while for large 
values of m,  

( ) 01 11
1 ≅ε−φ α− )t(me)t(m  

and thus the side effect is neglected. The coefficients φ are a 
weight that reflects the importance of the side-effects, when 
compared to the clinical state which are represented by the 
other two terms in the integral.  
 
 The term in x1 (uninfected CD4+ T cells) is clearly 
small (a favorable situation) when x1 is large (that is, an 
elevated number of CD4+ T cells). The term in x4 (viral 
load) is in a quadratic form, so that it is small (again, a 
favorable situation) when x4 is also small. The choices of 
the values of the weights φ, γ1, and γ2, are subjective and 
require controlled experiments.  
 
 The optimal control problem is to find m(t) that 
minimizes equation (5), subject to restrictions represented 
by the state equations (1-4) with fixed final time and free 
final state variables. Using the Pontryagin's Maximum 
Principle (see, for instance [Kirk 1970] or [Lewis 1986]), 
the adjoint variables should satisfy * 
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where H is the Hamiltonian function, which in the present 
case is given by  
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 Substituting the expression of the Hamiltonian function 
H into the equation (6), one gets  
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 The optimal m should minimize the Hamiltonian 
function, so that  
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which, in the expanded version is  
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which clearly becomes  
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and the optimal drug doses are given by  
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 The numerical values of the weights adopted in this 
work, for illustration purposes, are:  
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 The solutions of Optimal Control Problems are 
generally based either on the Pontryagin's Maximum 
Principle or Dynamic Programming (see Kirk 1970, Lewis 
1986). However, solutions of optimal control problems are 
rarely provided in a explicit closed form, because of the 
difficulty to solve the TPBVP (Two Point Boundary Value 
Problem) or the HJBE (Hamilton-Jacobi-Bellman 
Equation).  



 In the present work, the numerical solution was 
obtained by solving the TPBVP using the Collocation 
Method on Matlab 6.5 with routine bvp4c.m. The 
convergence for solution was fast and good.  
 
 
 
2.3. The Sub-Optimal Control  
 
 An alternative to solving the TPBVP\ or the HJBE 
equation is to optimize directly the cost function by using a 
search method after parameterization of the admissible 
controls. Hence, if {ui}i=1,2,... is a basis for the class M of 
admissible functions m(t), one can make the approximation  
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assuming that the expansion considers only terms up to 
order p. The restated problem is to find (c1,  ...  ,cp) such that  
 

J(c1, ... ,cp) = J[mc]  
 
is minimized.  
 
 The parameterization of the input functions m(t), in the 
present work, involves a subset of the coefficients in the 
series expansion employing sinusoidal functions, as 
proposed by Jacob (Jacob 1972). The approximations 
provide sub-optimal solutions, in the sense that the cost 
achieved is generally greater when the higher terms of the 
series expansion are neglected compared to the case 
resulting from use of the actual optimal control. However, 
sub-optimal inputs may be far easier to compute than the 
actual optimal control.  
 
 Following Jacob (Jacob 1972), a convenient expansion 
is in terms of sin ( ) and cos ( )  
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2.4. The Clinical Data  
 
 The clinical data used in this work were provided by the 
Centro de Referência e Treinamento em DST-AIDS in São 
Paulo city, Brazil, after proper authorization from the Ethics 
Committee. From the approximate total of 5.000 medical 
records, 43 were selected to be included in the database used 
here. The selection procedure was carried out in order to 
retrieve only those records pertaining to patients who did 
not undergo severe opportunistic infections that required 
aggressive treatment, intermittent treatment programs 
involving many interruptions and returns or frequent 
changes of the administered drugs among other factors. 
Moreover, in order to adjust the model parameters, the 
patient records were required to include adequately long 
periods of fixed treatment scheme, so that identification 
techniques could be applied.  
 
The model parameters for each specific patient were 
obtained by combining published values with those found 
by fine tuning by an iterative procedure. The parameters in 
the model were first initialized with values presented in Tan 
[Tan and Wu 1998] and Perelson [Perelson and Nelson 
1999]. Then, iteratively, small corrections were added to 
those parameters until the simulation results using the 
updated model would agree with the real clinical data, up to 
a pre-specified tolerance level. Table 1 presents typical 
numerical values (actually record 002) which are used in the 
results appearing hereafter. Considering that the number of 
data points for a specific patient is rather small, the 
uncertainty in determining the model parameters might be 
significant. Therefore, in order to verify robustness of the 
solution, the sensitivity of the results was evaluated by 
introducing random perturbations (±10%) on the nominal 
parameter values of the model, under the action of the 
computed sub-optimal control.  
 

Table 1.  Model parameters 
s R Tmax µ1 µ2 µ3 

0.01 0.102 1500 0.05 0.014 0.3 
      

µν k10 k20 N0 θ ω 
2 3E-5 0.007 1400 1 0.97 
      

 β1 β2 α1 α2  
 0.01 1000 0.002 0  

 

Table 2.  Initial conditions 
x1 x2 x3 x4 tf 
28 300 110 407,000 340 

 
 



3. RESULTS  
 
 The numerical simulations were performed using the 
initial conditions shown in Table 2.  
Figure 1 shows the response of the component x1(t), density 
of CD4+ T cells to treatments with optimal, suboptimal and 
constant doses. Figure 2 shows the corresponding x2(t) 
component, namely the viral load. Although the achieved 
level of CD4 is lower with the optimal doses when 
compared to those obtained by using either suboptimal or 
constant doses (figure 1), the viral load is significantly 
smaller when the administered doses are optimal (figure 2). 
Figure 3 shows the drug doses. It can be noticed that the 
optimal doses tends to be higher than either suboptimal or 
constant doses in the initial phase of the treatment. 
However, the optimal doses tend to decay faster than the 
sub-optimal doses. The sharp drop in the value 
corresponding to optimal doses in the last phase is related to 
the\ effect of adopting a fixed final time (border effect). In a 
practical application, one could compute the optimal doses 
for a slightly longer time horizon and discard the last 
periods. In figures 1 and 2, the actual clinical data 
corresponding to constant dose treatment offered to the 

specific patient (indicated by the symbol +) show that the 
mathematical model had been fitted adequately.  
 
Figure 4 shows the variation of the integral term in the cost 
functional with time. In terms of the proposed cost function, 
the optimal doses yield a significantly lower cost, indicating 
that an improved balance between the therapeutic and side 
effects and are achieved.  
 
In order to investigate the sensitivity of the sub-optimal 
solution (first form of mc, random perturbations were added 
to the parameters s, r, k10 and µ1, while undergoing 
treatment using the constant dose scheme. The perturbations 
were multiplicative factors of type (1+0.1∆) where ∆ is a 
uniformly distributed random variable assuming values 
between [-1 , 1]. The results are shown in figure 5. It can be 
noted that the perturbed trajectories in the CD4 × Viral Load 
plane remain within a vicinity of the nominal trajectory 
(without perturbations). The adjoint variable for CD4 is 
shown in figure 6 with terminal condition equal zero.  
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Figure 1.  Effects of the various forms of treatment on the number of CD4 cells. 
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Figure 2.  Response of the viral load to  treatments using varied drug doses. 

 
 

0 100 200 300 400
time (days)

400

800

1200

dr
ug

 d
os

es
 (m

g/
da

y)

constant doses

suboptimal doses

optimal doses

 
Figure 3.  Comparison of doses computed using optimal, sub-optimal (sin-cos expansion) and constant schemes. 
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Figure 4.  Integral term of the performance index. The actual cost corresponds to the value at time = tf = 340 days. 
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Figure 5.  Sensitivity analysis considering 10% random 

variations on the model parameters and under 
sub-optimal control. 
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Figure 6.  Adjoint variables for CD4 variable. 

 
 

 
4. CONCLUSIONS  
 
 This work dealt with the problem of optimizing the 
drug doses in the treatment of AIDS using optimal control 
theory. A sub-optimal control scheme that requires much 
less computational effort to yield the solution was also 
proposed. However, at least in terms of the proposed cost 

function, the optimal doses calculated by solving the state 
and co-state equations was found to be significantly better. 
Although the results depend on the choice of the cost 
function J(m), which involves subjective factors, the use of 
optimal drug doses resulted in an improved compromise 
between the side effects, reduction of the viral load and 
increase in the CD4+ T cells. A Monte Carlo type method 
with parametric perturbations of up to 10% variation around 



the nominal values showed that the proposed method has 
adequate robustness against modelling uncertainty. The 
results obtained here can be extended by considering multi-
drug treatment (such as HAART) using k1(m1) and k2(m2) 
functions. However, this can cause several difficulties for 
identifying the model parameters, since one would require 
patient data with a significant period of treatment under a 
fixed treatment scheme.  
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