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Abstract: - We have seen the appearance of some papers which extended techniques traditionally used in the 
study of the existence of solutions of nonlinear differential equations to solve problems of control, state 
estimation and parameter identification of nonlinear systems. These techniques often require some topological 
adjustments of either the space of admissible input functions U (the control space) or the state space X of the 
system. These topological adjustments became possible with the use of matched sets introduced by the author in 
[3, 4, 5]. The present work places its emphasis on how the matched sets can be used to adjust the spaces U and X 
for the problem of nonlinear control as formulated below. A summary of the theory of complete matched sets is 
also shown. Moreover, the semigroup approach is used so that the distributed parameter systems and delay 
systems can be considered as well as lumped parameter systems.  
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1   Introduction  
The techniques traditionally used in the study of the 
existence of solutions of nonlinear differential 
equations has been extended to solve problems of 
control, state estimation and parameter identification 
of nonlinear systems (see [1, 2, 6, 7, 8, 10, 11,12, 13, 
14, 15, ]).  
     Here we consider systems of the type:  
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where A is a linear operator on an appropriate Hilbert 
space X (the state space), N is a nonlinear operator 
from an input space U to X, and u(.) ∈  U is the 
control (U being a space of functions from the 
interval [0,T] to the input space U of the system). 
Such systems are often called semilinear systems.  
     It is assumed that the dynamics of the autonomous 
part of the system (1), i.e., 
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can be described in terms of a strongly continuous 
semigroup S(t) on X, so that the above formulation 
includes distributed parameter systems and delay 
systems, as well as lumped parameter systems.  
 
 
2   THE CONTROL PROBLEM  
Clearly for the case of lumped parameter systems we 
have that A is a n × n matrix, X = Rn and the  

semigroup S(t) becomes .)( AtetS =   

     The problem of control is to find a control u(.) 
which drives system (1) from the initial state x0 ∈ X 
to a given desired final state xd ∈ X at t = T. System 
(1) may be derived from the linearization of a system 
described by a nonlinear evolution equation such as  

 0x)0(x),t,u,x(fx ==&  (2) 
     Equation (1) is to be interpreted in the mild sense  
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with the initial conditions  
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     Papers such as [6, 8, 10, 12, 14, 15, 16] presented 
some techniques to solve the above nonlinear control 
problem (2) using the fixed point of a map Φ: X → X 
constructed on a space X of trajectories x(.) (e.g., 
X = L2(0,T;X)). These techniques often assume that 
the control space U and/or the state space X can be 
adjusted to new spaces U' and X', (with U ∩ U' and 
X ∩  X' dense on their counterparts U and X 
respectively) in order to the Volterra type operator G 
(defined on U) associated with the nonlinear control 
problem in its mild form (3)  
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have closed range in the space of trajectories X.  
     Sometimes however the assumption is that GT 
(also defined on U) given by  
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have closed range in the state space X. Besides, if L 
(defined on X) is the linear operator  
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the range of the operator G should be large enough to 
incorporates the set of nonlinear values L(t)Nz(.), for 
all t ∈ [0,T], that is  

Range (G) ⊇ {L(t)Nz(.) : t ∈ [0,T]}  
     For simple cases (e.g., U = L2(0,T; X) or 
X = L2(0,1)) these adjustments were not difficult to 
be done [15]. However, this is not always the case. 
Here we present some results based on matched sets 
(see [3, 4, 5]) which shows that such adjustments are 
always possible. Actually, this is part of a more 
comprehensive theory (see [3, 5]) which shows that if 
E1 and E2 are inner product spaces and Ψ: E1 → E2 is 
a densely defined linear operator, then the topology 
of E1 and/or E2 can always be adjusted such that some 
topological properties of Ψ (such as boundedness or 
continuity, compactness, closed range, etc.) will hold.  
     In other words, the spaces U of input control 
functions and/or the space of trajectories X can be 
adjusted to new spaces U' and X' (with U ∩ U' and  
X ∩ X' dense on their original counterparts U and X 
respectively) in order to some Volterra-type 
operators, such as G in (4), associated with the 
nonlinear control problem (3) have closed range.  
Similarly, when the state space X is infinite 
dimensional, the above adjustment can be done for U 
and X to obtain closed range for GT in (5).  
     Also, in the problem of state estimation of infinite 
dimensional systems using fixed point techniques is 
often assumed [6, 15, 16] that the state space X 
and/or the state of output functions Y can be adjusted 
to new spaces X' and Y' (with X ∩ X' and Y ∩ Y' 
dense on their original counterparts X and Y 
respectively) in order to some Volterra-type operators 
(associated with the state estimation problem) have 
closed range.  
     For instance, let us consider the semilinear (non-
stable) system  
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where N is the nonlinearity such as for example  
 yyyyN && 2),( =   (7) 

 yyyyN && 2),( =   (8) 

     This system can easily be re-written in the state 
space form (1) as 
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So, the output equation, if necessary, is 
[ ] )(10)( txty =  

Clearly, here the semigroup S(t) is given by 
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and therefore, the state x(t) can be expressed in the 
form (3) by 
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where the operator G from U to some space of 
functions (trajectories) x(.):[0,T] → X = R2 is given 
by  
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     Now let us put in the same frame the following 
system described by the (parabolic type) partial 
differential equation  
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with boundary and initial conditions  
z t z t and z x z xo( , ) ( , ) ( , ) ( )0 1 0 0= = =  

where N is the nonlinearity such as for example  
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     This system can be expressed in the form (1)  
& ( ) ( ( )) ( ), ( )z Az t N z t Bu t z z= + + = ∈0 0 Z  

with the state space Z = L2(0,1) , the state x(t) being 
the functions z(.,t) ∈ Z, the linear operator A on Z 
defined by  
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B = identity on Z and the nonlinear operator (Nz)(t) = 
N(z,t). Now the semigroup S(t) is given by  
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where z n,ϕ  and {ϕn(.)}n=1,2,... are respectively, 
the inner product on Z and the complete orthonormal 
sequence of Z = L2(0,1) given by  

ϕ πn x n x for n( ) sin , ,...= =2 1 2   
so, the state z(t) can be expressed in the form (3) by 
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where the operator G on U is given by  
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3   THE ADJUSTMENTS 
     Here we present some results based on matched 
sets [5] which shows that such adjustments are 
always possible. Actually this is part of a 
comprehensive theory [3, 4] which shows that if U 
and X are inner-product spaces and G: U → X is a 
densely defined linear operator then the topology of 
U and/or X can always be adjusted such that some 
topological properties of G (such as boundedness or 
continuity, compactness, closed range, etc.) will hold. 
The new adjusted spaces U' and X' will have the form  
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with the topology on U' given by the norm  
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and 
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with the topology on X' given by the norm  
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where un , xn ∈ F = R or C ; αn βn are real numbers 
satisfying  αn > 0 for all n∈Γ , βn > 0 for all n∈Λ , 
and  

{ } { }( )ΛΓ∆φ= Λ∈Γ∈ ,,,, nnnneM  (13) 

is any complete matched set for the operator G.  
 
 
3.1 Matched Sets 
     A matched set M is a quintuple of the type above 
(Eq. (13)), consisting of two sequences  

{en}n∈Γ  and  {φn}n∈Λ  

and three countable sets ∆, Γ and Λ satisfying  
en ∈ U for all n ∈ Γ , 

φn ∈ X for all n ∈ Λ ,  

∆ ⊆ Γ ∩ Λ and  ∆ non empty.  
     Moreover, the following must also hold in order to 
M to be a matched set for the linear operator G  

Gen = φn  for all n ∈ ∆ ,   and 
Gen = 0  for all n ∈ Γ \ Λ . 

     A matched set M is said to be complete if  
{ } U=Γ∈nneSpan    and   { } XSpan nn =φ Λ∈ . 

where the bars represent the closure of the spaces.  
     Details and plenty of examples of matched sets 
and complete matched sets can be found in [5].  
 
 
3.2 The Generation of Matched Sets 
     In [4] the author presents two different methods 
for obtaining a complete matched set M for a linear 
operator G. In the first method M is generated such 
that {φn}n∈Λ is a complete orthonormal set in the 
original space X. In the second method M is 
generated such that {en}n ∈ Γ  is a complete 
orthonormal set in the original space U. Note that if 
M is a complete matched set, then both U' and X' are 
in fact Hilbert spaces with inner-product given by  
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are complete orthonormal sets in U' and X' 
respectively.  
 
4   OPERATORS ASSOCIATED TO G  
     Note that if we have a complete matched set M for 
the operator G, then G: U' → X' can be expressed as 
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with domain of G given by  
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4.1 The Null Space and the Range of G 
     Other spaces and operator related with G can be 
expressed in a similar way by using again the 
sequences {en}n∈Γ and {φn}n∈Λ from the matched  



set. For example: the closures of both the Null space 
of G, Null ( )G , and Range of G, Range( )G , are given 
respectively by  
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4.2 Projections 
     The orthogonal projections P: U' → U' onto the 
space Null (G) and P: X' → X' onto Range (G) are 
given respectively by  
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4.3 Adjoint and Pseudo-inverse Operator 
     The adjoint operator of G, G*: D(G) → U', and 
the pseudo-inverse of G, G

+
:D(G+) → U' are given 

respectively by  
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If we set αn ne= U
2  for all n ∈ Γ, then U' = U (or at 

least U' ≈ U , i.e., U' is topologically isomorphic to 
U) and similarly, if we set β φn n X= 2  for all n ∈ Λ, 
then X' = X (or at least X' ≈ X, i.e., X' is topologically 
isomorphic to X). However, a different choice of αn 
will change the topology of U to a new space U' 
(with U ∩  U' dense on U) as well as a different 
choice of βn will change the topology of X to a new 
space X' (with X ∩ X' dense on X).  
 
 
5   THE ADJUSTMENTS RULES 
     The following results shown in [3, 5] establish the 
relationship between αn and βn such that the operator 
G:U' → X' hold some desired topological properties:  
 
 
5.1 Boundness 
     G: U' → X' is a bounded operator if and only if 
the set  
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5.2 Closed Range 
     G: U' → X' has closed range in X' if and only if 
the set  
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5.3 Compactness 
     G: U' → X' is a Hilbert-Schmidt operator if and 
only if  
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     Clearly if G is a Hilbert-Schmidt operator then G 
is a compact (or completely continuous) operator. 
The above results on matched sets provide the rules 
for the adjustment of the spaces U and X.  
 
 
6   EXAMPLE (Continued) 
First we consider the nonlinear system (6) and 
assume that the space U of input functions is L2(0,T) 
for some T > 0. Here the Range (GT) is always 
closed since it has finite dimension (X = R2). Even 
though the Range (G) is a space of functions from 
[0,T] to X and its topology can be adjusted in order to 
be closed.  
     We can let {en(.)}n ∈  Γ  be any complete 

orthonormal set in L2(0,T), such as for example  
Γ = N = {1, 2,...} 

[ ] ,...2,1,,0,sin2)( =∈⎟
⎠
⎞

⎜
⎝
⎛ π

= nTtt
T
n

T
ten

 

and the space of input controls U' as defined in (11). 
Now, if we set αn = 1, for n = 1, 2,..., the space of 
input controls U becomes U' defined in (11). With 
this choice we have U' ≈ U = L2(0,T). 
     However, by a different choice of αn 's we could 
give U' a different topology in order to be either 
larger or smoother than L2(0,T). If αn ≥ 1 for all n = 
1, 2,..., (or for all n > no , for some finite no ∈ N), 
then U' will be a space of smoother functions. For 
example, if 
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then U'≈H To
1 0( , )  the Sobolev space of differentiable 

functions on [0,T].  
     On the other hand, by setting αn ≤ 1 for all n = 1, 
2,..., (or for all n > no , n ∈ N, for some finite no ∈ 
N), then U' will be a larger space of functions than 
L2(0,T). For example, if  
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then U'≈H T−1 0( , )  the Sobolev space (distributions).  
Now set ∆ = Λ = Γ = N = {1, 2, ...} , φn (.) as  
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and the space of trajectories X' as defined in (12).  
     To give X the same topology as a known space 
such as, for example, L2(0,T;R2), (that is, X' ≈ 
L2(0,T;R2)) we then have to set  

,...2,1nfor
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     However, some nonlinearities such as in the one in 
(7) may force us to work in larger spaces and 
therefore we have to choose different values for the 
constants βn's. They will have to be smaller than the 
ones chosen in Eq (17) above. In that case, in order to 
have the Range of the operator G closed (i.e., Range 
(G) closed), we will also have to choose different α
n's. Actually, from Eq (15) we know that αn , for 
n=1, 2, ... must be chosen such that the set 

{ } ,...2,1nnn / =βα  

is bounded. For instance, α βn n for n= =, , ,...1 2   
     Some nonlinearities however, such the one in (8), 
allow us to work on smoother state spaces X. In this 
case we can also give a smoother topology to both X' 
and U' by an adequate choice of the βn's and the αn's, 
respectively. Now the constants βn's will have to be 
greater than the ones chosen in Eq (17) above.  
     Alternatively, for system (9) the Range (GT) will 
not always be closed. That will depend on the 
topology defined for the spaces U and/or Z. 
     Here we can assume that U = L2(0,T; Z) for Z = 
L2(0,T) as before. By setting {en(.)}n ∈  Γ  any 
complete orthonormal set of U, then the choice of  
αn n= ∈1 , Γ  

will give U' ≈  U. Greater values of αn's will give 
smoother spaces of functions U' and smaller values 
of αn's will produce larger spaces of functions U'.  

     For the state space Z let , {φn(.)}n ∈ Λ be 
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     Now, setting  
Λ=φ=β nfor

)T,0(Lnn 2  

then the space Z' defined as in (12) will have the 
same topology of the state space Z = L2(0,T). Again 
here, greater or smaller values of βn's will give us 
either smoother or larger (respectively) spaces of 
functions Z'. Also, in order to the operator GT have 
closed range we must choose αn for n∈ Γ satisfying 
Eq (15). That is, the set  

{ } Λ∩Γ∆βα ∆=  =  for/ nnn  

must be bounded.  
 
 
7   Conclusion 
Here we presented results that provide the rules for 
the topological adjustment of the spaces U (the 
control space) and X (the space of trajectories) and 
also for the adjustment of the spaces U and X (the 
state space). If G: U → X does not satisfy a desired 
topological property (e.g., boundedness, closed range 
or compactness) then, by adjusting the spaces U and 
X to new spaces U' and X' (i.e., by choosing 
appropriate numbers αn's and βn's ), G: U' → X' will 
satisfy the desired topological property. Similarly, if 
GT: U →  X does not satisfy a desired topological 
property then, by adjusting the spaces U and X to 
new spaces U' and X' , GT: U' → X' will satisfy the 
desired property. It is also easy to see (by using Eqs 
(14), (15) and (16)) that this adjustment (i.e., this 
choice of αn and βn) can always be such that  

- only the topology of U is altered (to U'), or  
- only the topology of X is altered (to X'), or  
- both topologies of U and X are altered (to U' and 
X' respectively). 

     These adjustment are necessary for us to be able to 
use some techniques developed to solve the nonlinear 
control problem (2) using the fixed point of a map  

Φ: X → X.  



     So, this structure, using matched sets for the 
operator G: U → X (or for GT: U → X), enables us to 
choose U' and X' (or U' and X') according to the 
desired topological properties for G: U' → X' (or also 
GT: U' → X') and the flexibility of the problem to let 
both/either U and/or X (or both/either U and/or X ) to 
be altered.  
In general, large space of functions (such as U = H-1) 
are not desirable since it may contain distributions. 
Even spaces U = L2 may sometimes be unsuitable for 
applications since it contains discontinuous functions. 
The above adjustments allow us to select spaces U' 
and X such that either the operator G or GT have 
closed range and U' ≈  to some smooth space of 
functions (such as H or Ho

1 1 ). 
     Loosely speaking, the smoother we want U to be, 
the smoother X will have to be, that is, we shall have 
to restrict to smoother trajectories.  
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