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Abstract. Each part of a mobile robot has particular aspects of its
own, which must be integrated in order to successfully conclude a specific
task. Among these parts, sensing enables to construct a representation
of landmarks of the surroundings with the goal of supplying relevant
information for the robot’s navigation. The present work describes the
architecture of a perception system based on data fusion from a CMOS
camera and distance sensors. The aim of the proposed architecture is
the spatial location of objects on a soccer field. An SVM is used for
both recognition and object location and the process of fusion is made
by means of a fuzzy system, using a TSK model.

1 Introduction

The field of mobile robotics has evidenced an enormous potential for research
and real experiments. Mobile robots with intelligent behavior are constructed in
various parts which by themselves show potential for study [1].

In particular, the sensing is responsible for supplying the robot with the
necessary information for the construction of a representation of its surroundings,
where the robot is placed, thereby allowing a dynamic description of the obstacles
and useful landmarks for the orientation of the robot. Such a task must be made
by computational methods whose objective is to reduce the inaccurate nature
of the sensors. In order to do this, sensor fusion techniques have been applied
successfully, providing a more suitable description of the surroundings due to
both redundancy and complementation of data.

To evaluate a perception system and its architecture, it must be submitted
to some specific task. For the proposed system, robot soccer is chosen and the
Robocup rules for small size robots (F-180 league) are used for the local vision
system constraints. For a team of robots to participate in a soccer match, various
technologies must be present: principles of autonomous agent design, multi-agent
collaboration, robotic and sensor fusion, among others. The main objective of the
application of the mobile robot in a soccer environment is, therefore, the analy-
sis of multiple areas of knowledge which serves to support socially significant
problems as well as industry.
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For the perception system proposed in this work, a CMOS camera and in-
frared distance sensors are used. An SVM (Support Vector Machine) is applied
for the classification of objects by a single color, without any image process-
ing. Another SVM is used for obtaining the polar coordinates of the objects,
by regression, from the image; for the sensor fusion, a fuzzy system using the
TSK (Tagaki-Sugeno-Kang) zero order model integrates the information of an-
gles of the objects with the data from the distance sensors, in order to refine the
information obtained.

In Section 2, aspects of the classifier used are shown. Section 3 describes some
architectures for sensor fusion. Section 4 describes the communication between
the vision system and the robot. The architecture proposed, as well as its model,
are presented in Section 5, while Section 6 presents general results obtained at
each stage. To finish, Section 7 presents some conclusions.

2 Support Vector Machine

SVM is a hybrid technique of statistical and deterministic approaches. This
means that to find the best space for classification hypothesis, a probability dis-
tribution is determined from the input space. The technique originated from the
work of Vapnik on the Principle of Risk Minimization, in the area of Statistical
Learning [2].

The technique is applied in the following way: in the case of linear space,
determine the hyperplanes of separation by an optimization problem; in the
case of non-linear space, a kernel function is applied and the new space obtained
is denominated the feature space – now linearly separable, of a dimension greater
than the original.

Fig. 1 illustrates the application of a kernel in the input space. In the feature
space, a hyperplanes is obtained for separation.

Fig. 1. Mapping of an input space non-linearly separable for a feature space

Another important aspect is the relationship between dimension VC (Vapnik-
Chervonenkis), number of support vectors and generalization of the classifica-
tion. To determine the dimension VC of a space, it is necessary to also determine
the number of support vectors; in this case to find the oriented hyperplanes,
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within the smaller space of hypothesis defined by the function of risk estima-
tion, which determines the limit of classified data. These ratios are determined
by the probability of classification error of test data, after finding the support
vectors through Eq. (1):

E�[P (error)] ≤ E[nVS]
�

(1)

where E� denotes the expectation for the input data set size � and nVS is the
number of support vectors of the SVM. In this way, the fewer the number of
SVM support vectors, the greater will be its degree of generalization, obviously
respecting a minimum limit, which will be determined empirically.

3 Sensor Fusion Architectures

Sensor data fusion represents the process of combining data or information from
multiple sensors for the estimation or prediction of states of entities (objects for
measurement) [3]. Some objectives for diverse scenarios for application of sensor
fusion can be cited: detection of the presence of an object or environmental
condition, object recognition, tracking of objects or monitoring of a continuous
event, the combining of information to make intelligent decisions, among others.

In the area of sensor fusion, the principal organization for regulating terminol-
ogy is the Joint Directors of Laboratories (JDL) Data Fusion Workgroup. This
organization defines a model of processes for data fusion, by levels of informa-
tion, besides a dictionary of terms related to this area [3]. The JDL determined
three levels for sensor fusion: data, features and decision.

An interesting work in the area of sensor fusion is presented in [4]. The work
is dedicated to the question of temporal sensor fusion and four types are sug-
gested: centralized, decentralized, sequential and statistical. Centralized fusion is
suitable when the system has only one active sensor. When more than one sensor
is present in the system, decentralized fusion (pure, sequential or statistical) is
better applied through a timeline.

Another important work on a flexible architecture for sensor fusion is pro-
posed in [5]. The author proposes six categories based on three levels of JDL,
yet used as processing input/output modes.

4 Communication with the Mobile Robot

The architecture of the agent used to control the mobile robot is illustrated in
Fig. 2 and proposed in [6]. The processes which comprise the agent utilize an
onboard multi-threaded program.

The Cognitive Level consists of a system based on symbolic knowledge which
manipulates both the information received at the Instinctive Level as well as
asynchronous messages received from other agents, generating the symbolic in-
formation for updating of the knowledge base at the Cognitive Level and imple-
mented at an instinctive levels.



An Architecture of Sensor Fusion for Spatial Location of Objects 465

Fig. 2. Agent architecture used to controle the mobile robot. Proposed by [6].

As the Reactive Level is responsible for processing of messages of perception
from the mobile robot, this becomes a point of communication between the agent
and the artificial vision system proposed. The Reactive Level is composed of
fuzzy controllers, input filter, output filter and mailbox. The process responsible
for the control of these elements, in Reactive Level, is called the Interface.

All messages sent by the perception system are stored in the mailbox. The
input filter extracts the value of the linguistic variables from the fuzzy visual
information used by the fuzzy controllers, while the output filter checks the fuzzy
controller outputs and combines them to define the action for the actuators.

The communication between the autonomous agent and the perception sys-
tem is made by a frame sent by the last one to the agent mailbox, as presented
in Fig. 3.

Fig. 3. Communication between the autonomous agent that control the mobile robot
and the perception system
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5 System Architecture

The system architecture, illustrated in Fig. 4, consists of four principle modules:
data acquisition, feature extraction/classification, sensor data fusion and internal
representation of object recognition.

Fig. 4. Architecture of the perception system

The goal of the system is to recognize and locate both the robots and the
ball, by theis colors. The Aquisitor modules are responsible for the acquisition
of data from the camera and distance sensors. Once an image frame is obtained,
this is classified by an SVM. The centroid of each extracted object is calculated
and sent to the Decision Maker to obtain information such as angle (θ) relative
to the robot and estimated distance (d) of each object. At the same time, the
acquired data of all the distance sensors is separated and sent to each Processor
Si, where i ∈ [1, 5], and a function of interpolation is applied with the objective
of finding the distance from the decimalized value of each of these. Finally,
all extracted information is sent to the Fusion Processor in order to generate
knowledge representation of each object in the scene. The location of objects
recognized in the image is given by its polar coordinates relative to the center
of the robot (θ, d).

The processors Si, as well as, the Classifier and Decision Maker are imple-
mented in two distinct threads and synchronized in the Fusion Processor, once
the fusion is made from the active sensors.

5.1 Acquisition

The camera used is the CMUCam2 designed by the Carnegie-Mellon University
and comprises a microprocessor SX52 made by Ubicom and a CMOS OV6620
detector.

In order to reduce as much as possible the acquisition time of a camera frame,
without reduction in quality of recognition, the obtained image is re-dimensioned
to 44x36 pixels. The acquisition time for this frame is 245 ms on average and is
determined by the camera’s hardware.

The distance sensors used are GP2D02 made by Sharp and use infrared
technology and the time for acquisition of a distance value is 75 ms.
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5.2 Object Recognition

The Classifier module for image pattern and Decision Making is responsible for
processing of the output of the image Aquisitor module. The image pattern
classification has the objective of identifying moving objects on the soccer field.
These objects could be: own team robots, opponent’s robots and the ball.

The CMUCam2 offers a color tracking function. The technique used is
straightforward thresholding and consists of tracking determined pixels whose
colors belong to the interval Rmin, Gmin, Bmin and Rmax, Gmax, Bmax, in the
RGB space. The disadvantage of this function is the high sensitivity to varia-
tion in luminosity of the environment. Because of this, an SVM is used with the
objective of building a classifier which is more robust to variations in luminosity.

5.3 Object Location

From the features extracted from the image (area of the object, height, width,
centroid) the location of objects is determined through its polar coordinates
(θ, d), where θ represents the angle and d the distance relative to the center of
the robot. To achieve this, two SVM responsible for effecting regression are used:
one to determine the angle of the object and map each pixel to its corresponding
angle; the other for distance and to map the height of each object in the image
and its distance to the robot.

To obtain the pixel-angle function, rays and parallel lines are defined on a
blank sheet of paper. The ball is put at the intersection between each ray and
line, where the origin of the rays is the center of the robot. Fig. 5 illustrates this
situation. A set of pairs (pixel, angle) is then obtained from the centroid of each
object and the respective location of the angle relative to the center of the robot
is determined.

Fig. 5. Determination of the relationship between pixel and angle

The artificial vision head proposed is controlled by two servo-motors and,
therefore, has two planes of movement (panoramic movement by rotation on
the y axis in the camera system of coordinates and tilt movement by rotation
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through axis z). In order to reduce the effect of radial distortion of images,
occurring when the artificial vision head is at different angles in relation to the
z, a value of the vertical axis of the head is added to the pair (pixel, angle)
previously obtained. Fig. 6 illustrates the angles used. For each angle (20o, 35o,
50o and 650) a set of pairs (pixel, angle) is determined and the tuple (pixel,
angle, angle of head) is submitted to the classifier.

Fig. 6. Angles of the moving head used to determine the pixel–angle mapping function

The distance information extracted from the image is only used as a rough es-
timate, in case an object is in the shade of the distance sensors. In fact the estimate
of distance only functions as a reference for the location of the robot in relation to
moveable obstacles. When the robot moves, it can refine the distance information,
rotating its body for example, to obtain a more reliable measurement.

5.4 Distance Sensor Processor

The distance sensor processor is responsible for separating the data obtained by
the thread of data acquisition of the sensors and determination of the distance
corresponding to the values decimalized from each sensor.

Once the sensor data is obtained, this is then submitted to a polynomial
function of interpolation. The useful range of operation of these sensors is 10 to
80 cm. For an interpolation of greater precision, two polynomials are defined in
two ranges: one for a range of 10 to 35cm and another for the range 35 to 80cm.

5.5 Fusion Processor

Once the values for decision for each sensor (camera and distance sensors) are
selected, these are submitted to the Fusion Processor. The sensor data fusion
is made by way of two distinct stages: angle and distance selection from the
image, and fusion between these values of decision and the values obtained by
the distance sensors. As the vision sensor is the slowest of the sensors used and
having greater density of space-temporal data by acquisition, this is used as a
synchronizer of fusion process.
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The timeline of the classes of sensors used is illustrated in Fig. 7. The acqui-
sition time of a distance value and conversion to centimeters is approximately 75
ms. This corresponds to approximately four readings of distance in the process-
ing of an image and selection of variables of decision in the image (300 ms). In
view of this the three first readings of the distance sensors are discarded and only
the last represents the distances of the objects recognized. This is illustrated by
the dotted lines in Fig. 7.

Fig. 7. Timeline of sensors involved in the fusion process (acquisition and processing)

The temporal alignment of the sensors information is necessary, as the sensors
used are of the active type. After making this alignment, the values of decision
are used for the sensor fusion. In order to do this, the fuzzy sets are determined
from the physical disposition of the distance sensors, as per Fig. 8.

Fig. 8. Determination of fuzzy sets from distance sensors

In Fig. 8, the three sensors (S3) are used as an illustrative reference of the
fuzzy set, used for the fusion processing through the linguistic variable distance
in all the sensors. The final distance and angle are determined by a fuzzy system
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using the TSK zero order model. The reason for this choice is determined by the
performance of this system for processing data samplese.

Once the angle is determined by the camera its value can be refined by the
distance sensors. The disposal of the distance sensors is known, and for reasons of
simplicity, the angles are supplied from the imaginary line (dotted line in Fig. 8)
which comes from the origin of the robot and passes through each central point
of the distance sensors. It can be seen in Fig. 8, that the further the object
is from the distance sensor, the more precise its angle is determined. This is
verified in the following way: the spread of each distance sensor is made by way
of a cylinder 3 cm wide (space between receptor and emitter) an object between
A1 and A

′

1 will have an angle less precise than an object between A2 and A
′

2.
Therefore, from the geometry of the sensors, the fuzzy sets are obtained

illustrated in Fig. 9.

Fig. 9. Fuzzy sets for the linguistic variable distance

From these fuzzy sets, eight rules are proposed:
R1: IF distance = SHADOW THEN distance = d(camera)
R2: IF distance = SHADOW THEN angle = a(camera)
R3: IF distance = VERYCLOSE THEN distance = d(Si)
R4: IF distance = VERYCLOSE THEN angle = a(camera)
R5: IF distance = CLOSE THEN distance = d(Si)
R6: IF distance = CLOSE THEN angle = a(camera)*0,5 + a(Si)*0,5
R7: IF distance = FAR THEN distance = d(Si)
R8: IF distance = FAR THEN angle = a(Si)

The functions a(.) e d(.) represent respectively the angle and distance ob-
tained by the camera and distance sensors. The real values of distances and
angles, after evaluation of the rules, are determined through Eq. (2).

S =
∑

ψizi∑
ψi

(2)
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where ψi is the T-norm of each antecedent and zi is the result of function f(x, y),
responsible for describing the relationship between the fuzzy sets of the an-
tecedent.

At the end of the fusion process, each object identified and located is repre-
sented internally by the following structure. For each image frame 〈numFrame〉,
all objects located identified with an 〈idObject〉 and with three characteristics
supplied: angle relative to the center of the base of the robot 〈angleObject〉,
distance of object to the front of the robot 〈distanceObject〉 and fuzzy velocity
of each object 〈fuzzyVel〉.

( frame 〈numFrame〉 ( see 〈timePerception〉 )
( object name 〈idObject〉 )
( angle 〈angleObject〉 )
( dist 〈distanceObject〉 )
( vel 〈fuzzyVel〉 ) )
The fuzzy velocity 〈fuzzyVel〉 is determined by Eq. (3). Fig. 10 shows the

fuzzy sets used.

〈fuzzyV el〉 = [µl(difP ), µm(difP ), µh(difP )] (3)

where µi(difP ) are membership functions, and i represents each of fuzzy sets
of linguistic variable velocity (low, medium and high). difP is the difference
between centroid location of an object in relation of frames n and n − 1.

Fig. 10. Fuzzy sets for linguistic variable velocity

6 Results Analysis

Three parameters are analyzed with the objective of evaluating the general per-
formance of the system: for object recognition, the application of the classifier in
different ranges of lights; for the location of objects recognized, the square error
and standard deviation of angles found.

For evaluation of the classifier, Table 1 illustrates the rate of precision for
different luminosities. The range of luminosity tested was between 570 and 980
lux and is in accordance with the Robocup rules for small robots competition
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(F-180 league), which define an illumination of between 700 and 1000 lux, for
each tournament.

Table 1. Results for different ranges of light

Illumination (lux) Precision

570 87.75%

660 84.08%

780 84.87%

800 86.36%

920 87.72%

980 90.00%

Figs. 11(a) and 11(b) illustrate the results of classification of robots and ball
image.

(a) Image obtained (b) Objects classified

Fig. 11. Classification results

Table 2. Standard deviation

Head angle Standard deviation

20 2,34

35 2,15

50 2,00

65 2,18

For evaluation of determination method of angle measurement of an object
relative to the robot, the standard deviation between the measured and real angle
for each position chosen for the vision head is calculated. The values for standard
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deviation of sixteen random measures (determined and real) are illustrated in
Table 2.

The parameters analyzed previously point, therefore, to a robustness of recog-
nition of an object and efficiency in their location. Through the fusion process,
the values obtained can be refined at each instance of robot actuation.

7 Conclusions

A perception system based on sensor fusion and applied in a mobile robot is here
presented. An SVM is applied to either recognize patterns and to extract the
decision attributes from objects in the image. For the sensor fusion, a TSK model
is used. A critical point of the system is the acquisition time of an image frame
and it must be evaluated and changed through the use of dedicated circuits and
a faster image processor.

The contributions of this work are: a system with a modular architecture,
making easier to repeatedly use modules in the system and also their inclusion;
robust pattern recognition with luminosity variation and just one training sam-
ple; an efficient time classification through an SVM applied to the color space
YCrCb; an adaptive system of information from sensors using Fuzzy Logic ap-
plied in the Fusion Processor. Another particular contribution of the system is
that the symbolic information sent to the mobile robot allows it to build a model
of the environment, which will be used in the decision process.
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