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ABSTRACT 

 
The purpose of this work is to compare statistical and connectionist techniques for patterns recognition. Connectionist approach is based 
on feedforward artificial neural network, self-organizing maps or hybrid algorithms which are also compared. An alternative 
preprocessing method to pattern recognition problems is also suggested.    
Keywords: self-organizing maps, neural networks, pattern recognition, statistics, artificial intelligence. 

 
1. INTRODUCTION 

The pattern recognition (PR) has been attracted several 
research interest. There are countless types of patterns, 
such as visual patterns, temporal pattern, logical pattern, … 
In a wide interpretation, it is possible consider that PR is 
present in any intelligent activity.   
There are several approaches to the problem of PR, in such 
a way that it is possible to highlight some used methods 
such as the statistical approach [18], fuzzy [20], 
connectionist [8] and knowledge-based PR [19].  
In the last decades significant progresses were obtained in 
this research area. These progresses allow the RP 
applications in several engineering areas [12, 15, 11].  
Examples of applications that request efficient and robust 
techniques of PR can be highlighted: Classification of 
radar signals [8];  Data mining [5];   Bio-informatics [10];  
Optical Character Recognition (OCR) [11]; Visual 
inspection for industrial automation [12]; Documents 
classification [13]; Biometrics recognition, including faces, 
iris or fingerprints [14];  Speech recognition [15].  
Due to the success in these applications, the Artificial 
Intelligence approach becomes one of the most important 
tools to the successful application of PR.  
In this paper, section 2 treats the statistical approach to PR 
and presents the V-C dimension. Section 3 describe the 
ANN feedforward and its use in PR tasks. The application 
of Self-Organizing Maps in PR is treated in section 4. 
Section 5 presents methods to pre-processing data, while 
Section 6 suggest a hybrid approach to RP. Conclusions 
are, finally, exposed in Section 7.  

2. STATISTICAL APPROACH TO PR 
This paper considers that classical algorithms for PR are 
based on statistics approach, which subdivide the 
classification problem in two different tasks: the features 

extraction and the comparison of these features with 
perfect models (i.e. noise free and representative of their 
respective patterns). These tasks are usually accomplished 
by two modules, which are denominated as features 
extractor and classifier [18, 19, 20].   
The extracted features are commonly composed by a set of 
numeric values that should be enough for the appropriate 
representation of the input data, with respect to the 
classification task in subject. The features vector represents 
this set of values. Thus, a point in a features space can 
represent an object.  
The model or prototype µi , considered as representative of 
a class or pattern i, is usually obtained by a set ℵ, 
composed by examples of features vectors belonging to i, 
through the estimate of the medium vector:  
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The equation 2.1 is adapted to the batch training. However, 
some applications require recursive algorithms. In this 
case, the training is sequential and the computation of the 
medium vector µ i is given for:   
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The matching of an input data x with a specific pattern i is 
based on the "distance" measures, among µ i and x. It 
means that the distance among two points in the features 
space can also be considered as the difference among two 
features vector. To the PR operation, a decision rule is 
adopted. It is based on the smallest distance.    
There are several usual forms to check the distance r 
among x=[x1, x2,..., xn]T and µ=[µ1, µ2,..., µn]T . One can 
mention:   



Euclidean distance:  
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Manhattan distance:  
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Mahalanobis distance: 
 )()( 12 µµ −−= − xCxr T                       (2.5) 

where C is the covariance matrix of the vector x.   
An alternative approach may be based on measuring the 
similarity among two points of the features space through 
the inner product:   
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where θ is the angle among x and µ. In this case, the 
similarity among the patterns is maximum for θ = 0. 
   
2.1. The V-C Dimension 
   
The V-C dimension (i.e. Vapnik-Chervonenkis) [9] is a 
measure of classification capacity for a family of functions 
that compose a patterns classifier. As an example, a XOR 
classifier is illustrated in Figure 1. In this case, µ1 and µ2 
are computed using Equation 2.1 and r is obtained by 
Equation 2.3 

µ1=µ2

Figure 1. Patterns separation of the XOR problem. 

Notice that minimum Euclidean distance classifier has 
linear decision surfaces. Then, the success of this classifier 
application is limited to lineally separable patterns. From 
Figure 1, one concludes that the classification of x2 and x3 
as belonging to the pattern defined by µ1 and also x1 and x4 
as belonging to the pattern defined by µ2  is not possible in 
the features space ℜ2, because the medium vectors of this 
two patterns coincide. Moreover, if there are only three 
points to be classified or if the features space possesses 
three dimensions, it would not be characterized as a 
classification problem. This problem also occurs when a 
classical perceptron is used to solve the XOR problem [9].  
This kind of restriction can be foreseen through the 
analysis of the V-C dimension of classifiers. Last example 
provides a specific case, where the features space has 
dimension 2, which implicates that its V-C dimension is 3. 
It means that minimum Euclidean distance classifier is able 
(i.e. perform classification with probability of mistake 
equal to zero) to classify any three data in the features 
space ℜ2. 
The V-C dimension of a classifier based on a set ℑ of 
Euclidean distance functions or internal product in a 

features space ℜn is defined as:  
VCdim(ℑ)=n+1                         (2.7) 

where n is the number of adjustable parameters (i.e. 
number of dimensions of the medium vector µ), noticing 
that, in this case, it is equal to the dimension of the features 
space. 
The V-C dimension indicates how many data can be 
classified by ℑ, with percentile of mistake zero. Thus, if 
the features vector of a minimum Euclidean distance 
classifier has dimension 10, it is possible to assure the 
appropriate classification of 11 data. On the other hand, 
classifiers as multi-layer feedforward ANN with sigmoid 
transfer function in the hidden layer and linear neurons in 
the output layer, has V-C dimension computed as: 

VCdim(ℑ)=k.n2                         (2.8) 
where k = cte and noticing that the number of adjustable 
parameters (n) is associated to the ANN weights and 
biases. See [21] for details.  
   
2.2. Statistical Approach Restrictions 
   
The determination of the relevant properties that will 
compose the features vector, usually demands a high 
knowledge of the application problem because these 
features are strongly dependent of the specific problem. 
Thus, to the same set of data, one can extract different 
features vectors based on the type of classification task 
required. As an example, one can mention recognition of 
phonemes and recognition of announcer tasks. Both 
receive the same set of data, however, the features vectors 
adopted should be different. One consider that the features 
extraction through a specialist is more an art than a 
science.   
An inadequate choice of the features vector can decrease 
the classifier performance. Some common problems that 
occurs due to an inadequate features extraction can be 
mentioned: 

· Correlated features: in this case the information 
contained in the vector of features may be redundant, 
because some of their coordinates can be approximated 
by a linear combination of the other ones. Thus, the 
amount of information contained in this vector may be 
insufficient to data appropriated characterization.   

· Features in inadequate scales: features relevance may 
mask the solution. Moreover, numerical problems may 
occur. 

· Feature vectors that will require non-linear decision 
surfaces for the pattern classification. It means that a 
more complex classifier (i.e. higher V-C dimension) 
will be also required.   

· Inadequate features: the features are, simply, inadequate 
or insufficient and they are not able to pattern 
differentiation.   

Quadratic decision surfaces as proposed in the classifiers 
based on the Mahalanobis distance (see Equation 2.5) are 
more capable than minimum Euclidean distance for 
patterns separation. However, the computational cost of the 
covariance inverse matrix increases proportionally to the 



square of the features vector dimension. Therefore, it 
becomes unviable for many practical applications. 
Comparison among equations (2.7) and (2.8) suggests the 
advantage of the ANN feedforward approaches. 
   

3. ANN FEEDFORWARD MULTI-LAYER IN PR 
   
ANNs feedforward multi-layer are efficient classifiers, due 
its capacity to produce complex decision surfaces. Such 
fact is ratified by the analysis of its V-C dimension, which 
is proportional to the square of the numbers of free 
parameters (i.e. synaptic weights and biases) [21].   
In general, for a m classes classification, an ANN is used 
with m neurons in the output layer. Moreover, the ANN is 
commonly trained based on binary target data. In these 
cases the target output vector has all their coordinates set 
as null, except the one that indexes the class, which the 
input data belongs. This approach allows a better 
theoretical analysis, due to facilitating the computation of 
the V-C dimension. 
The use of sigmoid transfer function in the hidden layer 
and linear in the output layers is usual and also convenient. 
Notice that this configuration allows analogies with 
statistical classifiers, as shown further on.   
The bayesian rule is the more usual decision rule for the 
output classification, in other words, the appropriate class 
is indexed by the largest coordinate of the output vector. 
Infinite arithmetic precision is considered such that ties are 
not possible.    
Figure 2 describes the ANN as proposed. It is 
characterized by two matrices: W1∈ ℜn x ℜj e W2∈ℜj x ℜm 
where W1 and W2 are the weights matrices. 
 

  
Figure 2. Flowchart of the selected ANN 

Bias b1 and b2 is also considered, such that: 
yh = ϕ(x.W1+b1)                                (3.1) 
y =yh

.W2 + b2     (3.2) 
were ϕ(.) is the sigmoid function and yh  is the output 
vector of the hidden layer. 
An interesting approach to the analysis of the ANN 
behavior in patterns classification, is to associate the 
hidden neurons as the features extractors and the output 
neurons (which are linear), to statistical classifiers based 
on the largest internal product criterion. Thus, the hidden 
neurons will extract features which characterize the input 
data, through their non-linear transformation (i.e. Equation 
3.1). It transformation defines a new space called as occult 

space or features space (i.e. characterized by the output 
vector of the hidden layer yh). In this space, when pattern 
recognition is achieved, it means that the feature vectors yh 
are lineally separable by the output neurons provided by 
the internal product illustrated in the Equation 3.2.   
   
3.1 Invariability Incorporation  in ANN for Pr 
   
A fundamental requirement to the recognition of patterns is 
the invariability of the features vector with respect to 
possible transformations in the input data. Such 
transformations can be exemplified by rotations, shift or 
scale change for a same set of data.   
There are several forms to increasing the ANN recognition 
robustness with respect to the transformations. Common 
procedures can be highlighted:   
· By the ANN structure. It is obtained through restrictions 
in the project for incorporation of previous knowledge 
regarding the task to be accomplished. Convolutive ANN 
may be applied [17].   
· By the training. The ANN is trained by several examples 
of the same pattern, which contains the pattern 
transformations. Computational cost of this approach is 
usually very high.  
· By the designing of invariant features extractor. This 
approach is applicable for any classifier, statistical or 
connectionist. Previous knowledge regarding to the 
problem to be treated is required, thus the higher cost of 
this resource belongs to the planner. 
 

4. SELF ORGANIZING MAP IN PR 
   
The Self-Organizing Map (SOM) [7, 16] is a non-
supervised training artificial neural network. Each output 
neuron represents a single class. An input data activates an 
only of these neurons.   
The main idea of this model is the competitive learning. It 
means that when input data is given, the neurons compete 
amongst themselves and the winner weights are adjusted in 
order to increase its representation of the input signal. The 
algorithm also provides a cooperation process among the 
winner neuron and its neighboring neurons, which also 
have the adjustments of their weights. Therefore, input 
signal features will stimulate some specific SOM region 
around the winner neuron. This approach allows us to 
classify the SOM as a topological paradigm [6].   
The motivation for the SOM model creation is the theory 
that the human brain has different sensorial inputs mapped 
in specific areas of the cerebral cortex. It is may be 
denominated as “probability distribution codified by 
location” [3, 6].   
Figure 3 illustrates a four neuron SOM from which the 
input data vector has dimension eight and each SOM 
neuron is totally connected to the input nodes. 
The organizer process begins arbitrating small random 
values to the weights, usually based on a uniform 
probability distribution, so that no previous organization is 
imposed to the map.  



 
Figure 3. Flowchart of a SOM 

Considering Ω as a set of data, an input vector represented 
by x=[x1,x2, ...,xn]T is randomly selected from Ω and 
presented to the net. A single neuron should be better 
activated by the input data. An usual criterion to the 
winners choice may be based on Euclidean distance dix 
which represents the distance among the input vector x and 
the synaptic weights of the ith neuron.    
Previous work [4] demonstrates that the interaction among 
a biological neuron and its neighborhood decreases with 
the increase of the distance. The same property is used by 
the SOM neuron and a topologic neighborhood parameter 
hij is used. It indicates the relationship among the winner 
neuron i and the j neuron. The hij parameter is symmetrical 
in relation to the neuron i and monotonically decreases 
with the increase of the dij distance. Also: 
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Therefore, gaussian function is commonly used:   
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where 0 ≤ σ is considered as the effective width of the 
topologic neighborhood. 
In order to provide neuron specialization (i.e. restricted 
neighborhood), σ may decrease during the iterations 
evolution. Exponential function are commonly used:    
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where σ0 is the initial value of σ, n is the number of 
iterations and τ is a constant.   
The SOM learning happens by the adjustment of its 
synaptic weights wij among the input node j and the neuron 
i. Considering k as the winner neuron, learning are 
governed by the expression:   

)()( ijjikij wxnhw −⋅⋅=∆ η               (4.4) 

where 0 ≤ η ≤1 is a learning rate. Dynamic learning rate 
η(n) can be used in similar way as proposed in Equation 
4.3.  
Supervised training may refine trained SOM performance 
[9]. This technique is known as vector quantization by 
learning. It uses previous knowledge of classification such 
that it moves the winner neuron weights w towards to the 
input vector x if a correct classification is achieved, 
otherwise, the weight vector is moved away. Notice that 
none of other neurons have their weights adjusted. 

)]()([)()1( nwnxnwnw −⋅+=+ α , if correct classification.   

)]()([)()1( nwnxnwnw −⋅−=+ α , if incorrect classification.   
where 0 <α <1.   
   
4.1. SOMs properties and limitations in PR 
   
SOM is usually employed to non-labeled data 
classification [4]. In this case, it presents interesting 
properties such as: 
· Approximation of the input space X∈ℜj to the discrete 
output space A∈ℜγ, associated to the neuron coordinates. 
Since the output neurons layer has low dimension γ (i.e. 
usually γ= 2), it provides data compression. 
· Topologic ordination of data. It is reached because the 
space location of the neurons is associated to an input 
features data set and the neighborhood corresponds to 
similar classes. 
· Association of the probability density properties. Areas 
on the space of input X with larger probability density are 
mapped in larger domains of the output space A, thus it has 
more associated neurons.   
Based on the presented properties, it is possible to 
conclude that the vector of weights wi associated to the 
neuron i, corresponds, in an analogy with the statistical 
approach, to a prototype µi, that characterizes a certain 
class (see Equation 2.1). However, differently of the 
statistical approach, the SOM does not request planner 
knowledge of classes and its relationship with the input 
data. The SOM will distribute the input data among classes 
according to the foregoing criteria of density match and 
topologic ordination.   
On the other hand, SOM approach is not justified to be 
separately used for practical problems of PR that are based 
on training sets that contains input/output data pairs. In 
these applications, the properties that differentiate the 
SOM of the statistical approach (i.e. the capacity to 
classify data without output-objective) are not explored 
and the SOM approach is equaled to a statistical classifier 
based on Euclidean smallest distance. Therefore the SOM 
classification capacity is limited to lineally separable 
patterns and its V-C dimension is equal to the statistical 
classifier V-C dimension (see Equation 2.7). 
 

5. PROPOSED PRÉ-PROCESSING FOR FEATURES 
EXTRACTION 

   
This work suggests some techniques to refute low 
relevance data. The main idea is to do not consider data 
that contain low information level with respect to a pre-
defined threshold. Information level will be analyzed based 
on its entropy. 
The central idea is to truncate the input data vector x. The 
new vector should keep enough information such that 
appropriate data characterization is still possible.  
It is important to notice that correlation methods may also 
be used. However, the calculation of the correlation matrix 
has a high computational cost that grows with the square of 
the coordinates number of the data vector. On the other 
hand, the entropy vector has the same dimension of the 



vector of data. Therefore, the entropy verification of the 
data seems to be the most economical approach.  
 
5.1. Discrete approach 
 
If considered that features are represented by a constraint 
set of discrete values, it is possible to associate each 
feature to a discrete random variable.  
Computation of the entropy of a discrete random variable 
X request the computation of the amount of information I 
revealed after occurrence of the event X=xi. Where I is 
related to the xi occurrence rarity. It means that observation 
of expected events brings low information level. On the 
other hand, a rare event is surrounded by a very specifics 
circumstance, which brings new information. 
Consider probability is pi as the probability of the event 
X=xi occurrence, then the amount of information is defined 
as:  

 )log()1log()( i
i
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xI −==                       (5.1) 

Notice that the inverse relationship with the probability 
denotes the notion of rarity. Since the scale is logarithmic, 
if pi=1 then I(xi)=0 and means that events that are 100% 
previsible does not contain any new information. 
Considering N possible values of xi that X can assume, the 
entropy is computed as  
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where E[.] is the expectation statistical operator. 
 
5.2. Continuous approach 
 
If considered that features are represented by a set of 
continuous values, the appropriate tool is the differential 
entropy h, which considers the difference among variables 
entropy. In this case, the probability of the event X=xi, 
being X a continuous random variable with density of 
probability f(x), is:   
                            dxxfxXP ⋅== )(}{                          (5.3)  

And the amount of information associated to this event is:   
))(log()( dxxfxI ⋅−=                       (5.4) 

Thus, entropy h’ is the mean value of I based on all the 
values that the continuous random variable X can assume:   
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Notice that since X is a random continuous variable, it can 
assumes infinites values and implicates that h’(X)→∞ 
because the probability a specific event X=xi tends to zero.  
 
From Equation 5.5:  
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Notice that the expression: 
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is common to all the features, thus it is cancelled when a 
differential approach is adopted. Therefore, h is defined as:   
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5.3. Entropy application to dimension reduction 
 
The reduction of the dimension provided by the entropy 
criterion, may help a correlation approach, since it reduce 
the computational effort to obtain the correlation matrix. 
Moreover, the analysis of correlation matrix allows the 
detection of correlated data pairs that contain redundant 
information.  
Notice that truncation process will only be performed 
without loss of data if correlation data is equal to 1 or its 
entropy is null. Rejection of low entropy data is then 
considered as an adequate way of data pré-processing due 
to its low computational effort. 
It is well known that there are no mathematical tricks that 
can supply inexistent information. Thus planner knowledge 
is usually requested because is not commonly proved that 
the training set contains enough information. Moreover, 
even considering that it contains, the computational effort 
would be prohibitive when consider the training set 
dimension. 
 

6. A HYBRID APPROACH TO PR 
   
This work illustrate the use of the SOM associated to a 
statistical classifier. The basic idea it to apply a non-
supervised training in order to achieve feature extraction 
and then proceed a supervised training according Equation 
2.1. 
The SOM is used as a features extractor, due to its inherent 
properties as presented in Section 4.1. Features of the input 
data will be represented by the coordinates of the winner 
neuron. Thus, designed SOM should have a larger number 
of neurons than the number of classes to be recognized. 
Such neurons are labeled as subclasses of the main classes. 
The process can be understood as a compression of the 
input space to a features space or subclasses space. 
To proceeds the supervised training, the output vector of 
the SOM which associates coordinates of the winner 
neuron, is then classified by a statistical classifier based on 
the smallest Euclidean distance with respect to the target 
class. 
Thus, each target class is composed by a set of subclasses 
represented by a respective neuron of the SOM. The 
decision surfaces are composed by several linear surfaces 
(i.e. a composition of SOM decision surfaces). The 
proposed approach provides more complex decision 
surfaces than a simple statistical classifier or SOM 
separately working, as illustrated in the figures 4 and 5. 
Moreover, parameters adjustment for the suggested method 
is simpler than the adjustment of a feedforward ANN. 



 

 
Figure 4. Linear decision boundaries of a SOM features extractor 
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Figure 5. More complex decision boundaries of a hybrid algorithm 
 

7. CONCLUSIONS 
 
To the studied methods in previous sections, the 
feedforward ANN has the largest patterns separation 
ability  (i.e. V-C dimension).  However, if consider that it 
has a larger number of parameters to be adjusted, training 
methods should be carefully chosen in order to avoid local 
minima and also a larger set of training data. Alternative 
training methods may be applied [1]. The computational 
effort to ANN training is usually hard. 
Even considering the lower V-C dimension of the SOM, it 
may be successfully applied to features extraction while 
also presents a low computational cost. In spite of SOM 
general features extraction ability, it does not refer to the 
specific classification problem to be treated due to the 
absence of the target data. Therefore, a hybrid approach is 
presented. 
The presented method seems to be promising. It take 
advantages of the SOM ability and based on its final 
supervised training, it becomes able to completely solve 
classification problems. 
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