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ABSTRACT 
 
This work presents the design and implementation of a 
controller for nonlinear, unstable and constrained 
systems. For instance, a magnetic levitation system is 
selected to highlights the controller properties 
especially with respect to stability and constraints 
satisfaction. The control action is based on the reference 
governor (RG) approach that uses a Lyapunov's 
concepts of energy to prevent constraints violation both 
on the state and on the manipulated variable even 
during large changes in the reference signal. To design 
the RG an inner loop controller is proposed. The RG 
receives the system states and the desired reference to 
compute and supply the reference signal to the inner 
loop controller. This procedure guarantees the stability 
while avoiding constraints violation. The paper 
describes in full detail the inner loop controller and RG 
design, but in spite of the successful results, the RG 
approach is not able to treat uncertainties. Here the 
authors propose to replace the whole linearization and 
control action for a single Artificial Neural Network 
(ANN). The ANN is trained using the system states and 
desired reference as input and the nominal control 
action as the output. Training data is generated thought 
simulation based on the action of the designed inner 
loop controller with the RG. The major objective in the 
use of the ANN is may also be able to treat 
uncertainties and allows straightforward 
implementation of training techniques to further 
provide adaptation capabilities. 
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1 INTRODUCTION 
 

The control of nonlinear systems has attracted 
widespread attention in the recent years (e.g. [8], [9], 
[12], [14], [15], [16]). Classical linearization methods 
works well when the model is accurate, the reference 
signals are well conditioned and have low amplitude. 
However, this may not be the case for inputs such as 
large steps or when uncertainties are present. 

The problem of the larger input steps can be treated 
using the reference governor (RG) approach [1] - [7], 
[10], [11], [13], which guarantees the constraint 
satisfaction for a general class of input commands while 
stability is assured by a Lyapunov based design 
technique. But the problem of uncertainties may still be 
critical. 

This paper proposes to replace the inner loop controller 
as well as the RG by a single ANN, which is trained 
with data pairs generated from the simulation of the 
previous controller actions. Thereafter the neural 
controller is able to on-line adaptation by means of 



 
learning techniques and may be robust against a class of 
uncertainties.  

Section 2 presents the inner loop and RG design theory. 
In Section 3 the studied plant is presented. Section 4 is 
devoted to apply the controller theory to the magnetic 
levitation system and the desired control action is 
shown. Section 5 presents the proposed neural control 
and its simulation results. The conclusions are 
presented in Section 6. 

2 Controller design theory 

Let the nonlinear system in the form: 
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Using the exact feedback linearization theory [9], [14], 
[15], [16], if Equation (1) can be written as 

[ ])()(1 xuxBAxx αβ −+= −&  (2)

where  
- A and B are n×n matrix 
- The pair (A,B) is controlable 
- α: ℜn→ℜp is defined in a domain Dx ⊂ ℜn 
- β: ℜn→ℜp×p is defined in a domain Dx ⊂ ℜn 

- β  is nonsingular  ∀x ∈ Dx and β-1 is its inverse 

then one can use the following control law 

vxxu )()( βα +=  (3)

Using Equations (2) and (3) we can obtain the linear 
expression of the form 

BvAxx +=&  (4)

For the linear system we simply use a state feedback for 
obtaining pole placement. The block diagram of the 
controller scheme is shown in Figure 1. 
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Figure 1: Controller scheme 

3 A magnetic levitation system 

Consider a magnetic levitation system as shown in 
Figure 2.  
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Figure 2: Magnetic levitation system 

This constrained nonlinear system can be described by 
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where m is the mass of the ball, k > 0 is a constant 
parameter, g is the gravitational acceleration and 
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is the electromagnet force controlled by i(t) 

Note that the system is clearly open-loop unstable. 
Moreover, classical controllers that do not take into 
account the constraints dmax, dmin and the saturation 
current imax may fail in the sense of letting the ball fall 
or having the ball magnetically attached to the base of 
the coil. 

If we define x1 = d, x2 = d&  and u = i2, then the system 
can be rewritten as 
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And the objective is to design the controller in order to 
guarantee the stability while avoiding constraints 
violation. 

4 Practical controller design 
4.1 Input feedback linearization 

An inner loop controller should be responsible to 
provide local stability, without considering the 
constraints. Here we use the exact feedback 
linearization theory in order to obtain an adequate local 
performance. To linearize the system using the 
proposed method, we must take the derivatives of the 
output y until we find the input signal, i.e.: 
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Let vy =&& thus, 
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Replacing u in Equation (9) in Equation (7) one obtains 
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which is a linear system. Comparing Equations (9) and 
(3) we obtain 
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4.2 State feedback 

With the linear system, use a state feedback to pole 
placement. Let 

⎥⎦
⎤

⎢⎣
⎡= ς

A
k 1    and   v = r - kx (12)

then, Equation (10) becomes 
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and it can be rewritten as 
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which is clearly linear and stable for A and ς  > 0.  

From Equation (9) one obtains the final control law of 
the form 
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In order to avoid the steady state error, let A=1 and for 
the sake of the simplicity let also ς =1. Note that A=1 is 
related to null steady state error with respect to the 
reference signal r(t), ς is related to the damping 
coefficient while the pair A, ς >0 guarantee the stability 
for the closed loop system. 

4.3 The reference governor design 

The controller described in the last two subsections 
works well when the constraints are not violated. 
However, when the constraints are violated the 
controller may fail. The main idea of the RG is to 
guarantee the constraint satisfaction while the local 
controller assures stability. It is assumed that there is a 
previous controller designed so as to provide an 
adequate performance around the defined set points but 
without considering the constraints. To avoid the 
constraint violation, the input to this closed loop system 
should be supplied through the RG. The RG receives 
the desired reference signal rd(t) and the state variables 

and then tracks the reference input r(t) as close as 
possible to the desired rd(t) but subject to constraint 
satisfaction while guarantee that r(t) → rd(t) when t → 
∞ . Figure 3 illustrates the RG scheme. 
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Figure 3: Reference governor scheme 

The first step in the design of the RG is the selection of 
a function in the sense of energy. Thus, let 
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and note that 
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The constraints are represented as 
qmax(r) = min Vr(x)   s.t.   d(t) - dmax=0 

qmin(r) = min Vr(x)   s.t.   d(t) - dmin=0 

imin ≤  i(t) ≤  imax 

(18)

Therefore, for the proposed case, one gets 
qmax(r) = (r - dmax)2 

qmin(r) = (r – dmin)2 
(19)

The violation of the constraints can now be detected by 
defining 
Cmax = Vr(x) - qmax  
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(20)

And using the following criteria: 

a) For positive step inputs r(t) → dmax, the constraint is 
violated if Cmax < 0, i.e.  
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b) For negative step inputs r(t) → dmin, the constraint is 
violated if Cmin < 0, i.e.  
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Therefore, one can use the following control law to 
avoid constraints violation: 

a) For positive step inputs, r(t) = min [rd(t), rmax] 
b) For positive step inputs, r(t) = max [rd(t), rmin] 
c) Compute Equation (15) and apply i(t). 

4.4 Current saturation analysis 

Consider now the current i(t) in the case of the initial 
condition with null speed x2 = 0, thus Equations (21) 
and (22) becomes: 

a) For positive step inputs r(t) → dmax, the constraint is 
violated if Cmax < 0, i.e.  
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b) For negative step inputs r(t) → dmin, the constraint is 
violated if Cmin < 0, i.e.  
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4.4.1 Cmax violation 

With x2 = 0, which is the worst case with respect to the 
maximum positive amplitude of the input step (i.e. 
initial x1 = dmin and rd = dmax), Cmax is violated if 
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and then the Equation (15) becomes: 
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Considering r(t) = dmax, at the equilibrium with x1 = 
dmax, the required control effort is 
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and 
tuu dc ∀≤ maxmax  ( 28)

Therefore, the required current can be always supplied 
without saturation. 

4.4.2 Cmin violation 

With x2 = 0, which is the worst case with respect to the 
maximum negative amplitude of the input step (i.e. 
initial x1 = dmax and rd = dmin), Cmin is violated if 
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and then the Equation (15) becomes: 
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Considering r(t) = dmax, at the equilibrium with x1 = 
dmin, the required control effort is 
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and 
tuu dc ∀≥ minmin  (32)

Therefore, the required current can be always supplied 
without saturation. 

4.5 Simulation results 

For the magnetic levitation system, let consider the 
following parameters 
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The inner loop controller proposed in Equation (15) 
guarantees the tracking of the reference signal but it 
does not take into account the constraints satisfaction. 
Figure 4 shows the desired reference rd(t) and the 
evolution of r(t) which guarantee that the constraints 
are satisfyed as shown in Figure 5. These input/output 
data pairs represents the desired control action and they 
are used to train the proposed Artificial Neural Network 
(ANN). 
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Figure 4: Reference evolution 
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Figure 5: Simulation results 



 

5 Neural control 

The proposed ANN must replace the whole control 
action shown in Figure 3 for a single ANN as shown in 
Figure 6. 
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Figure 6: Neural controller 

Looking for robust operation in closed-loop systems, 
before defining and training the neural structure, it is 
interesting to analyze the states x1 and x2 for different rd 
and generate a larger group of training data pairs.  

Figures 7 and 8 show the simulation results using the 
nominal inner controller and the nominal RG that 
characterize the desired solution to be learned for the 
neural controller. In the first figure, rd changes from 
rdmin to rdmax and back to rdmin, where  

rdmax = dmax    and    rdmin= [1, 1.4, 1.8, 2.2, 2.6] 

for simulations s1, s2, ... , s5 respectively.  

In the second one, rd changes from rdmin to rdmax and 
back to rdmin, where rdmax = [1.4, 1.8, 2.2, 2.6, 3] and 
rdmin = 1, for simulation s6, s7, ... , s10 respectively.  

For both Figures 7 and 8 the larger dots indicate the 
situations when the RG action was necessary to avoid 
constraints violation. 
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Figure 7: Desired solution 
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Figure 8: Desired solution 

5.1 Neural structure and training 

Practical simulation made us to select an ANN with one 
hidden layer and 6 hidden neurons (tanh) and a linear 

output layer. The ANN is trained under MATLAB 
simulations using the Levenberg Marquardt procedure. 

The trajectories from Figure 7 were used. Each 
trajectory represents 30s of simulation and the data 
pairs to ANN training are obtained with a sample time 
of 0.1s. The weights and bias are initialized randomly 
and the ANN is trained for 500 epochs. The following 
tables present the ANN parameters after being trainned. 
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Finally, Figure 9 presents the simulation results with the 
conventional RG compared with the neural controller 
results. 
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Figure 9: Neural controller results 

6 CONCLUSIONS 

The control of constrained nonlinear systems may be 
tackled by the RG approach, which use two distinct 
blocks to compute separately the inner-loop controller 
and the RG control actions. Here, a single ANN 
controller is proposed to replace both and successful 
results are verified with a large number of simulations. 

The robustness of the ANN in closed-loop is verified 
only when the training data pairs consider different 
trajectories as shown in Figures 7 and 8. The successful 
results shows that for a nominal cases a single ANN is 
able to replace both the designed inner-loop controller 



 
and the RG. If real cases are considered and 
uncertainties cannot be neglected, then with the use of 
the ANN we may also be able to treat uncertainties by 
providing adaptation capabilities. 
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