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ABSTRACT 

 
This paper presents a new approach for a control law 
commonly used for the control of nonlinear systems of 
the form uxgxfx )()( +=& . An usual control law is 
based on the nth time-derivative of the reference signal. 
However, the implementation of the nth  time-derivative 
of the error is also required and it may generates 
numerical problems. This paper shows that a simple 
linear state feedback can replace the original control 
law. It performs the same job and obtains equal results 
while avoid numerical problems. 
 

KEY WORDS 

Nonlinear control, State feedback 

 
1 INTRODUCTION 

Important bibliographical references (e.g. [4], [5], [6], 
[7], [8], [14]) reflect the widespread attention that the 
control of nonlinear system has been receiving in the 
recent years. The objective of this paper is present a 
new approach for a control law for nonlinear systems of 
form: 
 

uxgxfx )()( +=&  (1)

Basing on the exact feedback linearization (e.g. [5], [7], 
[8], [14]) the usual idea is try to use the control signal u 
to linearize the system, which allows us to easily 
analyze the dynamics and the stability of the nonlinear 
system. Thus, in order to define the dynamics of the 
nonlinear system, an external reference is introduced 
and a common and general control law (e.g. [1], [2], 
[3], [9], [10], [11], [12], [13] and [15]) has the form  
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where )(n
ry  is the nth time-derivative of the reference 

signal yr, k is a gain vector and e is the augmented error 
vector, as will be presented in the next sections. The 
aim of the control is to reduce the tracking error of the 
output y with respect to the reference signal yr. 

This paper reorganizes the control law (2) and presents 
it as a state feedback. Moreover, we consider that the 
functions f(x) and g(x) are known.  

Section 2 presents the general structure of the nonlinear 
system and the usual control law. In section 3 a new 
approach to the implementation of the usual control law 
(2) is suggested and the new proposition for the control 
law is defined. For simulation results, a selected 
nonlinear system and its numerical results are shown in 
section 4. Finally, in Section 5 we present some 
conclusions. 



 

2 Nonlinear systems 

Let a nonlinear system be described by a state equations 
of form: 
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where 

C = [ ] n,,, ×1001 K  (4)

and f:ℜn→ℜ and g: ℜn→ℜ are continuous and known 
functions. The aim of the control is to track a reference 
signal yr ∈ Cn([0,∞), ℜ), i.e. such that the nth time-
derivative of the reference signal yr is continuous and ∈ 
L∞. 

Defining the instantaneous output error 

E = yr – y (5)

one can define the augmented error vector 

e = [ ]T)n(E,,E,E 1−K& ∈ ℜn (6)

Remark 1: From (3), note that  
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Remark 2: Also from Eq. (5), note that 
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Thus, let k be a gain vector of the form 

k = [ ]Tnk,,k K1 ∈ ℜn (9)

such that the polynomial h(s) = s(n) + kns(n-1) +...+ k1 is 
Hurwitz. Therefore, if one uses the control law of the 
form 
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by replaceing (10) in (3), one gets 

ekyx Tn
rn += )(&  (11)

And replacing n
n xy &=)( from (7) in the equation (11), 

one gets 

0... 1
)1()( =+++ − EkEkE n

n
n  (12)

which describes the dynamics of the error and implies 
that 

0)(lim =
∞→

tE
t

 (13)

that is the proposed aim of the control. 
 
 

3 The control law 
 

Using Simulink (@Matlab) construct the blocks 
diagram as shown in Figure 1 which represents the 
scheme for the control law (10) implementation.  
 
 

 

Figure 1: Scheme of the control law implementation 

 

It is important to note that numerical problems may 
occur when computing the time-derivative of the error 
E or of the reference signal yr. 
 

3.1 Avoiding numerical problems 

In order to avoid numerical problems when 
implementing the control law (10), we generate the 
reference signal as shown in Figure 2. 
 
 

iyr
(n) yr

(n-1) yr
(1) yri  

Figure 2: Reference signal generation 



 

Thus, the reference signal and its jth time-derivatives are 
available, for j=1...n, but note that the time-derivatives 
of the error are not. 

From Equation (10), we separate the expression: 

eky T)n(
r +  (14)

and from Equation (8) we can rewrite: 
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Considering that the model which generates the 
reference signal is stable, then 

01
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Therefore 

xkeky TTn
r −=+  (17)

and the control law of Eq. (10) becomes: 
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3.2 Important agreement 

The proposed control law in Eq. (18) is very interesting 
because it uses a states feedback. However, an 
important remark is necessary in order to reproduce the 
control system when using the original control law of 
Eq. (10). 

The new control law works very well when there is no 
constant value in the reference signal yr, for example, 
let yr = sin(t). On the other hand, when we consider that 
the system has a bias r in such a way that r is constant 
(i.e. its time-derivatives is zero, then yr(t) = sin(t) + r 
and r must be introduced because the )(n

ry  integration is 
not able to generate it. See Figure 3. 
 
 

iyr
(n) yr

(n-1) yr
(1) yri ++

r  

Figure 3: Reference signal with r(t) 

Thus, the Equation (15) becomes: 
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Considering the stability of the reference model (16) 
one gets: 

xkrkeky TTn
r −=+ 1  (20)

Therefore, substituting Equation (19) in equation (10) 
we obtain an equivalent control law of form: 
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And its implementation is shown in Figure 4. 

 

Figure 4: Scheme of the proposed control law 
implementation 

 
 

4 Practical example 
 
 

4.1 Selected plant 
 
 

As a practical example, consider the open loop unstable 
magnetic levitation system as shown in Figure 5 

dmin
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Figure 5: Magnetic levitation system 



 

Its dynamics is described by 

m
Fgd r −=&&  (22)

where m is the mass of the ball, gr is the gravitational 
acceleration and F is the electromagnet force produced 
by a coil fed with current i. 
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where c is a positive constant and d is the distance. 

Let )(1 tdx = and )(2 tdx &= , the state representation 
then becomes: 
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so that comparison to Equation (3) yields: 
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Remark 3: Here we are not considering yet the 
constraints dmin  and dmax as well as the current 
saturation. 
 
 
 

4.2 Implementation 

Using the Simulink (@Matlab), construct the blocks 
diagram as shown in Figure 4. 

For the plant parameters, we set gr = 9.8 , m = 0.05 and 
c = 1. For initial conditions we set x1 = 1.1 and x2 = 0. 

Also, for the gain vector k we choose k = [20, 1000]T. 

The functions f(x) and g(x) can be computed using 
Equation (25). 

As a first example consider r(t) to be constant. For 
instance, let r(t) = 2. Figure 6 shows the simulation 
result. 
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Figure 6: Simulation with constant r 

As a second example consider r(t) varying in time. In 
order to keep the theoretical requirements, also consider 
that r(t) is very slow with respect to the system 
dynamics. Thus, let r(t) = sin(t) + 2. Simulation result 
is shown in Figure 7. 
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Figure 7: Simulation with r(t) varying in time 

Moreover, the obtained results as presented in Figures 6 
and 7 are the same when using the control law as the 
scheme proposed in Figure 1. 

5 CONCLUSIONS 

This paper proposes a reorganization of the control law 
that was usually used in previous works (e.g. [1], [2], 
[3], [9], [10], [11], [12], [13] and [15]) in order to avoid 
numerical problems when computing the time-
derivatives in real-time. 

The obtained results shows that the control law can be 
rewritten as state feedback. It becomes clear to 
understand and also easier implementations are reached. 
The most significant results are the use of linear control 
techniques, such as a state feedback, for the control of 
nonlinear systems. 
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