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ABSTRACT 

This paper presents an electro-mechanical system used as 
active suspension. A linear mathematical model for this system 
is presented. The aim is to improve vibration suppression in a 
payload carried by this suspension system. The linear 
quadratic gaussian / loop transfer recovery (LQG / LTR) 
approach is briefly explained, performance specifications are 
established and then the technique is applied to the linear 
model of the system. The target filter loop (TFL) that has the 
desired characteristics, as stability robustness, is obtained 
through the adjustment of a Kalman filter. After this, a linear 
quadratic regulator (LQR) is made to recover the TFL. The 
controlled system is evaluated with respect to vibration 
suppression characteristics, including situations where the 
payload mass value is increased or decreased in 50%. It is 
shown, by digital simulation, that the controlled system is 
robust with respect to payload mass variations. 

1. Introduction 

Modeling errors, parameter variations, noises and 
disturbances have always been the main obstacles in the design 
of high performance control systems. They change the behavior 
of the systems in unpredictable ways. In addition, on several 
practical applications, it is desirable that the control system 
improves vibration suppression with acceptable robustness to 
those modeling errors, parameter variations and noises. As an 
example of this class of applications we can mention the system 
to suppress mechanical vibrations. 

Vibration has various detrimental effects, for that, reducing 
mechanical vibration provides for improved user comfort and 
safety, and it increases product reliability and durability by 
reducing wear. Nowadays, applications for which it is desired 
to suppress vibrations range from home appliances and 

automobiles to space applications and nuclear power plant 
(Murphy and Bailey, 1990, Campbell and Crawley, 1994, Zhou 
et al., 1995, Tamai and Sotelo Jr., 1995, Denoyer and Kwak, 
1996, Bai and Lim, 1996, Holzhüter, 1997). 

The last three decades have seen the appearance of many 
techniques to improve robustness, performance and stability of 
feedback systems. These efforts have been broadly grouped 
under the name of robust control. The different approaches to 
the synthesis of robust systems include Linear Quadratic 
Gaussian Loop Transfer Recovery (LQG/LTR), H2 and H∞ 
optimization, Lyapunov function methods, minimax 
optimization and Quantitative Feedback Theory (QFT) method 
(Banavar and Aggarwal, 1998). 
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Figure 1. The proposed active suspension system. 

 
This paper proposes an electro-mechanical system, based 

on the lever principle, where the aim is to provide vibration 
suppression of a payload (Figure 1). For that, a LQG/LTR 
robust controller is designed. Section 2 carries a brief and 
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introductory historical about the LQG/LTR procedure and 
section 3 the electro-mechanical system model is described. 
Section 4 presents the performance specifications and section 5 
shows the design procedure, in which the target filter loop is 
obtained using a Kalman filter and then it is recovered by a 
linear quadratic regulator adjustment. Finally, in Section 6 the 
implementation of controlled system is proposed and simulated 
in a digital computer and it is then shown that the performance 
and stability specifications are met. 

2. An Introduction to the LQG/LTR Technique 
The Linear Quadratic Gaussian approach to control design 

dates back to the early seventies (Athans, 1971). The 
robustness aspects of LQG design, and variations of this 
technique, were studied extensively (Gilman and Rholds, 1973; 
Houpis and Constantinides, 1973). Athans and Safanov (1977) 
showed how a multivariable LQG design can satisfy four 
constraints: (1) Stabilization of insufficiently stable systems; 
(2) Reduction of system response to noise; (3) Realization of a 
specific input/output relation, and; (4) Improvement of a 
system’s robustness against variations in its open-loop 
dynamics. They also showed that their linear quadratic state 
feedback (LQSF) design had the property of an infinite gain 
margin and at least ±60° phase margin. The lack of guaranteed 
stability margins (Doyle, 1978) encouraged the effort of 
various researchers to develop a technique for recover the nice 
robustness properties of the LQSF regulator. Doyle and Stein 
(1979) presented a technique which they described as being an 
adjustment procedure for observer-based linear control system 
which asymptotically achieves the same loop transfer functions 
as full-state feedback control implementations. All these efforts 
resulted in the loop transfer recovery (LTR) procedure (Doyle 
and Stein, 1981). The basic philosophy behind recovery is that 
by manipulating the weighting matrices, the return ratio at the 
output can be made to converge to the Kalman filter return ratio 
or the return ratio at the input can converge to the return ratio 
of a Linear Quadratic Full State Feedback regulator. As a result, 
the nice stability properties of the Kalman filter or full state 
feedback regulator are obtained (Doyle and Stein, 1981, Cruz, 
1996, Skogestad and Postlethwaite, 1997). 

The LQG/LTR method works well mainly for minimum 
phase systems. To deal with nom-minimum phase systems, 
some modifications are essential. This is due to the fact that 
during recovery, the compensator obtained by the LTR 
procedure inverts the stable plant dynamics. In nom-minimum 
phase systems this would result in right half plane pole-zero 
cancellations which are not desirable. However, for nom-
minimum phase plants this procedure can be used but with 
some modifications (Doyle and Stein, 1981, Athans and Stein, 
1987).  
 
3. Linear Model For The System 

The proposed electro-mechanical system consists of a lever 
supported in two points. The main support has a DC servo-

actuator to provide vertical displacements that are used for 
vibration suppression. The other support is passive, consisting 
of a spring and a damper. The lever is assumed to have a 
payload on the non-supported extremity. The objective is to 
reduce vibrations being transmitted between the baseplate and 
the payload. This is achieved by using the DC servo-actuator in 
such a way as to produce displacements that oppose the effects 
of the undesirable disturbances. Based in the physical assembly 
shown in the Figure 2 a linear model was obtained to describe 
the dynamical behavior of the system around an equilibrium 
point. 
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Figure 2. The physical model. 

 
The dynamical linear model for this system may be divided 

in two SISO sub-models. The first, presented by equation (1) is 
the input/output model between a reference signal and the 
measured system output. 
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The second sub-model, presented by equation (2) is the 
input/output model between a disturbance, type mechanical 
vibration in the baseplate, and the measured system output. 

 
 

DDD

DDDDD

Y xC
uBxAx

=
+=&

 (2)

where: 

[ ] [ ] [ ] [ ]

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

≈

≈
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

−

00000
1.900,48-0,19-4,76-1,90-
88.981,06-8,90-10,59-88,98-

01000
00100

01

1

00
ΦCK
0I0

00
0M0
00I

A 5D

 

 

[ ] [ ]
[ ]

[ ]T

D

DD

β
119,090,800

1 2

1

≈
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

−

1β
0

00
0M0
00I

B  

 

[ ]0005,21
2

1 −=⎥⎦
⎤

⎢⎣
⎡ −= 0C l

D  

 
 

 
Figure 3. State space model for the proposed electro-

mechanical system. 
 
In presence of the reference and disturbance signals, the 

main system output, here denoted by XC, is the sum of YR and 
YD, as one can see in the Figure 3. 

 
4. Performance Specifications 

The aim is to reject disturbances such as mechanical 
vibration. Thus the performance specifications for the 
controlled system are the following. 

• For a disturbance of step type (maximum step size of 
0.02m) the response of the controlled system should not deviate 

from the reference level (zero) more than 40% of the value of 
the injected disturbance and it should be accommodated in not 
more than 1 second, inside of a strip of ±5,0% of the value of 
the disturbance injected around this reference level; 

• The controlled system should present robustness for 
variation up to 50% in the mass that we have desired to isolate; 

• The control signal is required to be smooth and below 
the maximum level of 12 volts in absolute value; 

 
5. Control Design Procedure 

The LQG/LTR procedure consists of two steps: first 
designing the Kalman Filter in such a manner that the filter 
loop satisfies the performance stability robustness 
requirements, and second recovering this loop asymptotically 
by turning a full-state feedback regulator. 

5.1. Target filter loop (TFL) design 

The TFL design problem is to obtain the Kalman filter gain 
matrix, Kf, to meet the objective of stability robustness. First, 
the following system is considered: 
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where ξ, ν are standard Gaussian, zero mean, white noise 
processes, and: 
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The state estimates, for use in the state feedback, are 

obtained by a Kalman filter which is given by: 
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where the Kalman filter gain Kf, is given by: 

 
 1−ΘΣ= TCK f  (3)

 
and Σ satisfies the algebraic Riccati equation: 

 
 0  1 =−++ − CΣΘΣCWΞWΣAAΣ TTT  (4)

 
Using: 
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where I is an identity matrix with appropriate dimension in 
each case, to solving the equation (3) and subsequently the 
equation (4), we had obtained the Kalman filter gain to the state 
estimation of the proposed system, and consequently the target 
filter loop. 
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5.2. Loop transfer recovery (LTR) design 

After the Kalman filter gain matrix, Kf, has been obtained, 
the control gain matrix, KC, is calculated through the LTR. 
This is to calculate the full-state feedback regulator gain 
matrix, KC, via the optimal control technique of the control 
linear quadratic regulator (LQR) problem. The optimal 
performance measure is given as: 

 

( )∫
∞
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0
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where Q (Q=QT ≥ 0) and R (R=RT > 0) are a state weight and 
control weight matrix respectively. The optimal control input is 
given by: 
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where the full-state feedback gain matrix, KC, is given by: 

 

SBK T
RC
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and S satisfies the following algebraic Riccati equation: 
 

 01 =−++ − SBSBQSASA TT ρ  (5)
 
The value of KC is interactively determined by adjusting 

the design parameter ρ to recover the target filter loop. The 
parameters used to solve the equation (5) were: 
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where I is a identity matrix with appropriated dimension. 

The transfer function to robust LQG/LTR controller is then 
given by: 

 

( ) fRfCRRC KCKKBAIK 1)( −−−−= ssGK  
 

and the overall closed loop systems’ stable space equation can 
be written as: 
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Both the optimal state feedback regulator (LQR) and the 

Kaman filter exhibit nice properties of infinite gain margin, 
least ± 60° phase margin an ½ gain reduction margin both for 
SISO (Athans and Safonov, 1977) as well as MIMO systems 
(Safonov et al., 1981). It might be expected that LQG 
compensator would also generally yield good robustness and 
performance. Unfortunately this is not so. The counterexample 
by Doyle (1978) proves the lack of guaranteed robustness. 

Fortunately there is a way out this problem. By following 
the procedure LTR (Athans and Stein, 1987) these properties 

can be recovered. It can be shown (Doyle and Stein, 1981), by 
manipulating the weighting matrices, that the return ratio at the 
output can be made converge to the Kalman filter return ratio. 
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where ( ) fRR KAIC 1−−s  is called by Target Filter Loop. 
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Figure 4. Convergence of LTR Procedure [ρ → 0]. 

 
During the LTR process, while ρ comes close to zero the 

recovered loop closes to TFL, and as consequence the control 
inputs, u, increase so much. It is important to choose the ρ 
value that makes guaranteed a trade-off between recovery and 
the control signal. In this hand, the chosen value to ρ was 10-9, 
as it was aforementioned. 

 

 
Figure 5. Controlled Closed Loop System. 
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6. Results 

The complete system, including the LQG/LTR controller, 
can be represented by the block diagram shown in Figure 5. 

In order to check if the controlled system satisfies the 
performance specification, extensive digital simulations were 
carried out. A disturbance signal type step of 0.01m was 
injected into the system with the reference fixed at zero level of 
displacement. Variations of  ± 50% in the mass of payload was 
also introduced. The results are presented in Figure 6 (system 
response) and Figure 7 (control signal). 
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Figure 6. Response of Controlled System for a Step 
Disturbance, With and Without Parameter Variation. 
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Figure 7. Input for a Step Disturbance, With and Without 

Parameter Variation. 
 

One can see in Figure 6, insofar that varying the payload 
mass in the ± 50% the control system continues to comply with 
the specifications, although there was a slight deterioration of 
the performance, when the mass was made bigger rather then 
smaller. This shows the robustness of the control design. 

The control input necessary to reject step disturbances is 
shown in Figure 7. The variation is brief and smooth, satisfying 
the performance specifications. As the system is linear, it is 
obvious that for step larger than 0,01m the amplitude of the 
control signal will be increased in a linear way. 

 
Conclusions 

The linear model of the proposed electro-mechanical 
system has been presented in state space domain. For this 
model, a robust controller was designed by LQG/LTR 
approach. Both the adjustment of the Kalman filter (which 
yielded the target filter loop TFL), and the selection of 
weighting matrices for the linear quadratic regulator (which 
recovered the TFL) were based on digital simulation. This was 
done in such a way to guarantee all the performance 
specifications, including the trade-off between the closed-loop 
response robustness and a smooth control input. The obtained 
controller satisfies the specification and presents the desired 
vibration suppression properties. Moreover, it is robust against 
variations in the payload mass up to 50%. 
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