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ABSTRACT: This article proposes a new adaptive fuzzy controller for a class of nonlinear systems governed by a
state equation of form & = f(x)+g(x).u. The exact feedback linearization approach is used to define a control law
structure and the nonlinear functions f(.) and g(.) are estimated through fuzzy blocks in order to provide a control
signal. A state estimator is also used and none external control is necessary to achieve stability and tracking error
convergence. Because of the control and adaptation laws and the estimators convergence, stability and tracking
error convergence are assured. For practical example, it uses a nonlinear and unstable magnetic levitation system
and simulation results are shown. Copyright Controlo 2002
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1 INTRODUCTION

The control of nonlinear systems has attracted
widespread attention in the recent years (e.g. [11],
[12], [15], [19], [20], [34]). Classical linearization
methods such as exact feedback linearization work
well when the model is accurate and specially when
constraints are not considered. Also, the adaptive
fuzzy control techniques has been used in a variety
of applications for control of nonlinear systems (e.g.:
[1,2,3,5,6,7,8,9,10, 13, 16, 17, 18, 21, 22, 23, 24,
26,29, 30, 31, 32, 33, 35]).

This paper presents an adaptive fuzzy control in or-
der to guarantee safe operation under model uncertain-
ties. The control law is based on the exact feedback
linearization approach and pole placement techniques.
Therefore, fuzzy blocks are used to estimate the non-
linear functions and provide the desired control action.
Usually, the certainty equivalent controller as well as
an extra control signal u (called as supervisory con-
trol) are used (e.g. [4, 8, 9, 21, 24, 25, 27, 28, 36]).
The supervisory control acts like a sliding mode con-
trol, i.e., if V' > V, it acts in order to force V<0 4
is a function in the Lyapunov sense and V' is an up-
per bound). In this paper, the states are also estimated
but using conventional techniques and the inclusion of
any other external signal (like a supervisory control
us) was not necessary to achieve stability and tracking
error convergence.

In section 2 the class of nonlinear system as well as
the general structure of the desired control law are pre-
sented. The fuzzy structure is shown in section 3. Sec-
tion 4 presents the implementable control and adapta-
tion laws, therefore, the states estimation convergence
and the stability is proven using Lyapunov techniques.
In the section 5 the nonlinear and unstable magnetic
levitation system is presented and simulation results
are shown. Section 6 presents the conclusions.

2 NONLINEAR SYSTEM

Let a nonlinear system be described by a state equa-
tions in the form:

i‘l = T9
j?g = T3
: )
T = f(z) + g(x).u
Yy=a
or in an equivalent form:
t=Azx+ B(f(z)+ g(z)u) @
Y=



where

010 0
0 01 0
A= : 3
0 00 0 1 3)
0000 0],
B=[0 - 0 1],

and f : R — R and g : R™ — R are continuous and
known functions. And let the control objective be to
track a reference signal r(t) = r € R.

Letting a gain vector K:

K =[Ky,...,K,] € R" @)

and basing on the exact feedback linearization and
pole placement techniques, the following control law
can be used:

u:ﬁ[—f(a:)—&-r—f(.x] ®)
Substituting (5) in (2), one gets:
t=(A-B.K).x+ B.r 6)

which define a linear dynamic and the stability is as-
sured by the eingenvalues of the matrix (A — B.K)

3 FUZZY SYSTEM

Let a fuzzy system composed by r rules, each one
of them as:

IF z, is A} and ...and z,, is A7 THEN y is B; (7)

where {A{, ...,A{l} / Bj are the input/output mem-

bership functions (MF) related to the j** rule ( j =
1..r). Consider y; as the point in that B; is maximum
(#tp,(y;) = 1) and define the vector of parameters

o7 = [Y1, ..., yr] .-The fuzzy output can be expressed
as:
y=0"W(x) ®)

where

W(z) = [Wi(z), ... WT(C?)]T

W) = Al o)
2 (T g te)

and
Wj(z) € [0,1] (10)

is usually called as the weight of the j** rule. The
scheme is shown if figure 1.

In the present paper, the use of fuzzy structures is
proposed in order to estimate the unknown nonlinear
functions from equation (2). Thus, it considers the
existence of the fuzzy optimal parameters ¢ and ¢
which guarantee that the function f(.) and g(.) can be
estimated using the fuzzy blocks f(x|0) = O?W(a:)

Figure 1: Fuzzy structure

and g(z|0,) = OgT.W(ac) (fuzzy as universal approxi-
mators). Since

f(z]0F) — fz) <ef
9(x|0y) —g(x) < &g

Vax € D,
Vo € D, an

where ¢ and ¢, are positive constants as small as
desired and D, is the x domain, then the nonlinear
system presented in equation (2) can be represented
through fuzzy blocks of form:

{ i = Az + B(f(x]0}) + g(]07).u) (12)
y=o

It is important to note that for the fuzzy blocks, the
states are not available and must be estimated. There-
fore, f(.) and g(.) should be represented by f(Z|6y)
and ¢g(Z|6,) amd the controller must guarantees that
T — .

Once the real parameters 6} and ¢ are unknown,
they must also be estimated and the following notation
is used to the fuzzy estimators

>

=

£(alby) = ; ) 13
0, .

g(f‘ g)

4 STATE ESIMATION AND CON-
TROL

When f(.) and g(.) in equation (2) are unknown,
the idea is to use fuzzy systems to substitute them by
fyzzy blocks f(2|0f) and g(&|d,) as discussed before.
Using the states estimator and fuzzy estimators as pre-
sented in (13), the control law (5) becomes

w(
w(

=2

1
9(57|9g)

Remark 1 As proposed in previous works, some pre-
vious knowledge of the system must be available to set

bounds. In our case, it is used to set a lower bound

g% in order to avoid ‘g(fc\ég)‘ = 0 in equation (14).

u =

{—f(i"\@f)-i-r—K.:%] (14)

We also consider that the sign of g(x) is available and
equal the sign of g(Z|0,). It is not more than what is
already used.

Remark 2 From here, for sake of simplicity, we will



simplify the notation of form:

f=f()0}) = (9?)T W(z)
9= oGl = (@) W@
f=1(210r) = jf-W(i")
9=29(2104) =0, .W(z)
For the state estimator, define a gain vector k:
k=lk1,....kn] € R" (16)
And the state estimator be of form
b= A2+ B (f + g.u) FBR@ -8 g
§ =i
Define the error estimation
e=xr—2 (18)

Subtracting (17) from (12) one gets

¢=(A—Bk)etB (f—f+(g—g).u) (19)
or in equivalent form

¢=Ae+ B. [f—f+(g—§).u} (20)

where
0 1 0 0
0 0 1 0
A= @
0 o 0 --- 1
—ky e e e —ky,

Since A is a stable matrix, there exist a unique pos-
itive definite symmetric matrix P,,x.,, which satisfies
the Lyapunov equation:

AP+ PA=-Q (22)

where (), «», is an arbitrary positive definite matrix.
For sake of simplicity, define as an auxiliary vari-
able

p=B.|f~f+(g—9)u (23)
therefore, the equation (20) becomes:
ée=Ae+p (24)
4.1 Control objective

The control objective is to guarantee the state esti-
mation convergence and the fuzzy parameters estima-
tion convergence. It must guarantee that f(#|0;) —
f(x]0%) and 9(2l6,) — g(x|0,) when t — oo.
Hence, the control action will force the tracking error
convergence to zero.

Thus, introduce the notation:

(/)f - 02 - ?f and (‘/)f == (25)
b, =0,—10, and b, =—04

and let define a function V' of form:

1 1 1
V=cel . Pet —¢rt. — ol 26
7€ 6+27f¢f ¢f+2,yg¢g by (26)
where v , 7, are positive constants. Taking the time-
derivative:

| 1 += 1 ~=
V=c(e"Pe+el . Pé)——¢7.0; — —a) .0,
2 5 g
@7n
Firstly, let analyze the term:

1
=3 (¢".Pe+el.Pe) (28)

Substituting the value of é from equation (24) one gets:

Ty =4[Ae+ o’ Pe+ 1eT.P.[Ae+ p]
=1[Ae]" Pe+ipT . Pe+ el PAet e .Pp
29)
Noting that
[Ae]” =T AT (30)

equation (29) becomes
Ty = 1e’ AT.Pe+ 5pT .Pe+ ie . PAe+ el .Pp

geT. (AT.P+ PA).e+ 5pT.Pe+ 5¢T.Pp
= —%eT.Q.e + %pT.P.e + %eT.P.p

(€2))
Since P is symmetrical:
pl.Pe=el .Pp (32)
then: .
T, = —§eT.Q.e +el.Pp (33)
Now, analyze the term:
Ty = —ao¢5 .05 (34)
Ty
Defining the control law:
0y =~;.e".P.B.W (&) (35)

and substituting (25) and (35) in (34) one gets:

1 ~ T
T=—(0;-0s) 4y PBW() (36)
s

From (15) note that f = f(2(0%) = (¢%)" .W(&) and
f=f(2)65) = @?W(ﬁ:) Hence::

T, — T .P.B (f - f) (37)
Analyzing the last term:
1 =
T3 =—¢, .0 38
3 Vg (/)g g ( )

and using the same procedure of 7% one obtains:

T3 =el.P.B(g—3).u (39)



Thus, equation (27) can be rewritten as:

V= —%eT.Q.e +el'.Pp
—e¢'.PB (f — f) —el'PB(g—9)u
V=-L1"Qe+e .Pp
—¢T'.PB {f —f+(@—9) u}
(40)
Rescuing the equation (23) one gets:
V= —%eT.Q.e +el'.\Pp—el.Pp

V=-1e"Qe<0 “h

It means that the error e is bounded. In order to prove
that e — 0 when t — oo, let apply the Lemma of
Barbalat. Thus

V= f% (éT.Q.e + eT.Q.é)
=1 {(A.e +p)" Qe+ el.Q. (Ne+ p)}
(42)
Since e is available in V, and V' is bounded because

Vv < 0, therefore, if p is bounded then from Barbalat
one guarantees that

V —0 when t— oo 43)

which implies that

e —0 when t— o0 44)
From (23) note that
p=B.[f f+(g-9)u (45)

Hence, the boundness of p depends on the boundness
of the estimators f and g. This can be provided by
the use of the projection vector [14], as it is usual in
previous papers (e.g. [4, 8,9, 21,24, 25,27, 28, 36]).

5 SIMULATION RESULTS
5.1 Selected plant

As an example, consider the magnetic levitation
system as shown in figure 2. Its dynamics is described
as: P

m
where m is the mass of the ball, g, is the gravita-
tional acceleration and F' is the electromagnet force
produced by a coil fed with current ¢

Z'2
whith ¢ > 0 a constant and d as ‘the distance.
Letting 21 = d(t) and x2 = d(t) the state represen-

tation becomes:

{ .7'71 = T2 ” (48)

T2 =9r = o7

So that comparison to equation (1) yields:

f(SE) =Jr
9() = —¢r 49)

Figure 2: System of magnetic levitation

Control Plant
% 1 .5 N X=Ax+Blf(x)+g(x).u] %
U= — [-f+l"-K.X] g ’
§ y=C.x
’l\— X
]
Fuzzy Adaptation

f8) _16=hB %e)

a(%18) §=h@ %e)
Estimator J
b'e
e H

Figure 3: Blocks diagram detailed

5.2 Implementation

The proposed system was implemented using the
Simulink ((©) Matlab 5.3) version. The blocks dia-
gram is shown in figure 3.

1. For the plant parameters, set g, = 9.8 [m/s?] ,
m = 0.05[Kg]and ¢ = 1 [Nm/A?].

2. For initial conditions set z; = 1.1 [xlO_Qm]
and z3 = 0.[x1072m/s]

3. To define the system dynamics use K = [1 1]
4. For the state estimator, set the initial conditions

x1 = 1.5 [xlO_Qm] ,x9 =0 [xlO_Qm/s] and
a gain vector £ = [100 20] thus

0 1
Ae = [ 100 20 ] (50)

5. Set the () matrix as identity to obtain

(&)

p_ 2.6250 0.0050
~ | 0.0050 0.0253

which satisfies equation (22).

6. Set the d(t) range as D, =
(0.5 5 3.5] [x107%m], which represents the
fuzzy input universe of discourse.

7. Setwy, = 10°



Degree of membership

1 15 2 25 3
Input universe of discourse

Figure 4: Membership functions

5.3 Fuzzy sets

In order to compose the fuzzy membership func-
tions, choose points to be the center of the member-
ship functions, covering the whole input universe of
discourse. For instance, one can use the vector

[ 0.6 ]
0.8
1.0
1.2
14

Xe=1 g (52)
2.2
2.6
3.0
3.4

and obtain the membership functions as shown in fig-
ure 4.

For each membership function A7 define a single
rule of form:

IFd(t)is A THEN yisy; j=1.r  (53)

where r =length(Xc).

As the knowledge of the system is available from
(49), note that exact rules can be generated simply
computing the value of the function g(z|6,) as being

C

Tm(Xe R J=1.,r (54)
(Ac

Y5 =

Hence the exact value of the 9; parameter is

[ —55.5556 ]
—31.2500
—20.0000
—13.8889
—10.2041
—6.1728
—4.1322
—2.9586
—2.2222
—1.7301

L 4 rx1

(3%)

which means that for j = 1,..,r the knowledge is
represented by exact linguistic information of form:

= (56)

IF z; is X¢; THEN g(z) is — m

3.5 . . —Reference r(t)
o N w : . |- Plant output

,,,,,,,,,,,,,

Output signal
N

0-5g 50 100 150
Simulation time(s)
Figure 5: Simulation results
8

Control effort
N

0 50 100 150
Simulation time(s)

Figure 6: Control effort

Note that these rules are exact because we know the
function g(z). To be didactic and in order to show the
states and function adaptation, some uncertainties can
be inserted. For instance, use

Yj =S5-Y5 5 j =1.r (57)

where ¢; is a random number chosen from a normal
distribution with mean zero and variance one. In our
case, the estimated parameters were initialized as

[ —64.7196 ]
—19.5887
—1.5016
—4.8834

- 7.1073
—10.4700
—0.2440
—5.3168
—0.5868
—1.5081

(58)

5.4 Simulation results

The simulation results are shown if figures 5 to 12.

6 CONCLUSIONS

Previous works usually uses a reference signal v,
(e.g. [4,8,9, 21,24, 25,27, 28, 36]) so that they con-
sider that its time-derivative are known to compose the
control action and the reference signal is restricted for
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Figure 7: Norm of fuzzy estimated parameters
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Figure 9: g(x) estimation error
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Figure 10: X1 estimation
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Figure 11: X2 estimation
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Figure 12: States estimation error

a class of signal which the n — order time-derivative
can be computed (such as the trigonomectric func-
tions). On the other hand, they are unable to guarantee
safe operation, for example, for a single step as refer-
ence signal.

As previous papers, it is based on the unknown
functions f(z) and g(x) that are proposed to be es-
timated through fuzzy blocks. However, differently
from those previous works, this paper do not re-
stricts the reference signal because it do not uses the
n — order time-derivative of the reference signal to
compose the control law. The exact feedback lin-
earization approach suggest the design of the con-
trol law (5) and the gain matrix K is applied to
pole placement. Moreover, in previous papers (e.g.
[4, 8,9, 21, 24, 25, 27, 28, 36]) the use of an exter-
nal control signal was nessary to achieve the stability.

The tracking error y(t) — r(t) represents the con-
trol objective and it is reached since the function
and states estimation converges. Previous works (e.g.
[4,8,9,21,24,25,27,28, 36]) treat the tracking error
as the main control objective and the functions esti-
mation convergence does not care since they are main-
tained in a compact and constraint set using the pro-
jection vector [14]. The proposed control law (14),
basing on the Lyapunov techniques (equation 26) as-
sures that the states estimation error decreases as well
as it guarantees the function estimations convergence
to their real values, i.e., & — x, f(2]0;) — f(z]0%)



and g(2(0,) — g(x167).

Successful simulations with different number of
rules as well as different initialization indicates the ro-
bustness of the method with respect to these parame-

ters.
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