A Neurofuzzy Training Method for Mamdani-Like Structures
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Abstract: - This paper proposes a backpropagation method to train the Mamdani-like fuzzy structures. The idea
is to train the proposed fuzzy structure maintaining a smaller computational effort as well as the Takagi-

Sugeno-Kang (TSK) case.
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1 Introduction

The Mamdani fuzzy structure as proposed by E.H.
Mamdani in [21] reflects the ideas that are originally
proposed by L.AZadeh [37] to providing an
implementation that is intuitive. Because of the
heuristics insight, it has received widespread
acceptance in industrial and academic media and it is
well suited in terms of interactions with humans. In
spite of these qualities, the computational effort that
is required in the Mamdani defuzzification procedure
may be prohibitive and it may become impracticable
to implement in real cases, especially when
learning/training are necessary.

The gradient descent method is the most usual
technique to train neural networks and neurofuzzy
structures but it cannot be applied directly to the
original fuzzy system because the inference process
is represented by functions such as min and max
which are not differentiable. In the literature two
basic approach are proposed: replace these functions,
using differentiable ones or do not use specifically
the gradient but other learning procedures. Basing on
this first idea, Berenji and Khedkar [4] propose the
GARIC (Generalized ARIC -  Approximate
Reasoning-based Intelligent Control) that use the
softmin operator and Jang [13] proposes the ANFIS
(Adaptive Network-based Fuzzy Inference System)
that use the sum-product approach. The basic
difficulty with these and other approaches is that
they become very hard to apply to Mamdani fuzzy
structures and they are usually restricted to the TSK
[32], [34] cases (e.g. [1]. [2]. [5]. [8]. [9]. [11]. [12].
[14], [15], [16], [18], [20], [22], [23], [26], [31],
[33], [35]. [36]. Another usual approach is based on
the fizzy neuron (¢.g. [6], [17], [24], and [25]) that
uses the neural network structure but generalize the
artificial neuron concepts to get the fuzzy reasoning.

This article is based on a Mamdani-like structure that
was previously proposed by the authors in [29] and
describes the training procedures analogous to the

backpropagation used with neural nets. It shows that
the computational effort becomes compatible with
TSK, but keeping the fuzzy reasoning yielding
consequent membership functions (MF), thus
rescuing the fuzzy concepts as proposed by
Mamdani, specially referring to the consequent MF
properties.

Section 2 contains a brief review of the Mamdani-
like structure proposed by the authors and its
mathematical description. Section 3 describes the
training procedures and related expressions. In
section 4 some numerical results are provided and
the conclusions are presented in section 5.

2 Mamdani-like Propositions

One of the basic differences between the Mamdani
and TSK fuzzy models lies on the fact that the
consequences are, respectively, fuzzy and crisp sets.
Hence, the computation procedure required to obtain
the output signals are distinct. While in the case of
TSK fuzzy models the output is computed with a
very simple formula (weighted average, weighted
sum), Mamdani fuzzy models require higher
computational effort in the defuzzification procedure.
Therefore, in spite of the Mamdani fuzzy
characteristics, the TSK fuzzy structures becomes
the most common way to apply fuzzy reasoning,
specially when the fuzzy models requires training
and optimization of membership functions.

In [27] and |[28] the authors apply the
backpropagation directly to the discrete Mamdani
structure, using the sum-product composition to
derive the gradient expressions. In spite of the
successful results, the computational effort is
considerable. In [29] the authors propose a new
Mamdani-like structure that simply computes the
centroids of each consequent MF before aggregate
them. Some authors refers to [19] (pp. 386) and [14]
(pp. 80) that tries to show that defizzifying each rule
individually generates the same result that is



obtained when the aggregated rules are defiizzified.
In [29] the authors show that this is only true for a
very specifical case and not valid in the general case.
Initially a brief review of the author's Mamdani-like
structure is presented.

For sake of simplicity, avoiding cumbersome
notation, the figure 1 represents an example for the
SISO case. For the general case the equations are
similar, but it would require notational adaptations.
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Figure 1: SISO training block diagram

2.1 A fuzzy rule base

As proposed in the figure 1, define x as the input and
yas the fuzzy output signal. Then consider the
antecedent/consequent MF and the rule-base:

a) X,...X,asthe n antecedent MF
b) Y;,...Y, asthe m consequent MF
¢) R;.....R, asthe rrules that compose the rulebase

Generally the fuzzy reasoning can be expressed
through rules of form:

Ifxis X;thenyis V; (1)
where X; € {X; ..., X,Jand ¥, € {¥;,..., V};}

In order to apply the gradient descent procedure the
inference operators should be differentiable. This
paper uses the sum-product composition as usual in
practical implementation (e.g. [3], [3], [7]. [10], [11],
[14], [30], and [31]). The operators satisfy the
differentiability property and will be useful to
achieve the desired results.

2.2 Defuzzification

Define the function Dfz(MF) to be used to

defuzzifying a given MF (e.g. triangular, trapezoidal,

gaussian,...) based on its own parameters and using
the centroid method, that means:

1. For triangular MFs, Y;=[a b c] where a,b,c are
the breakpoint parameters and / is its height. The
defuzzification formula becomes:

h (2)
sz(Yl)zg(aerJrc)

2. For trapezoidal MFs, Y;=|a b c d | where a,b,c,d
are the breakpoint parameters and / is its height.
The defuzzification formula becomes:

3)

hd*+c* -0 -a* ved-ab)

D zZ(1;)— —

/E(Y) 3 ( d+c—b-a

3. For gaussian form, Y= [, ¢] where o;¢ are the
parameters, similar to N(c,o”), and /4 is its height.
The defuzzification formula becomes:

Dfz(Y;)=h.c “)

These equations only refer to some simple MF just
because these expressions are simples. In general
cases, they must be extended to obtain the fuzzy
output.

2.3 Computation of output
For each rule i, define 7 as the vector of each
consequent MF centroid, represented as 7.

Ti=Dfz(Y) , Viellr] &)
and let C; be the consequence of the rule 7
C=pxi(x).T;, Viellr] (6)

Then compose the C matrix as the matrix of the rule
consequences, that becomes:

C=p, ™7 @

- C, = “)fz(x)Tz

€=, (]

Finally, simply use the sum operator to aggregate the
rules consequences and obtain the fuzzy output:

JA/ = Z Ci
i=l

This is graphically represented in figure 2.
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Figure 2: Mamdani-like fuzzy structure

See [29] for details.

3 The Training Algorithm
Consider the trapezoidal MF parameters as shown in
figure 3.

a b ¢ d
Figure 3: Trapezoidal MF



To train the fuzzy structure, admit that the data pair
(x,yy) 1s available. Consider y; as the desired (target)
output when the input is x and e= J - y; as the output
error. Thus define the pointwise cost function as

)
J6) =@ = [0 -y, 0]

Define the input universe of discourse (UD) and set
the global cost function as

SSE(x) = % > e -y.®I

YxeUD

(10)

Define P as the cither antecedent or consequent MF
matrix of parameters, then the backpropagation
training algorithm must compute:

» » aJ (1

k+1 k P a P

where P ; is the new value of the matrix P based on
its last estimate P, and mp as the learning rate.
For the Mamdani-like fuzzy structure as proposed in

figure 2, a—Jbecomes:
oP

a_d (2
oP 0y OP
Where the required terms are:
o (13)
a) —-=e
oy
: (14)
o > C,
,o.12¢)
) =L 7
oP oP
oC, _ olu,(0.DE] ()
¢ = , i=1.r
oP oP

Finally, note that W, (x)and Dfz(Y;) only depends

on e¢ach antecedent/consequent MF parameters
respectively then the differentiation becomes trivial
and only differ for each kind of MF.

3.1 Practical computation of the gradient
The idea of using gradient descent is simple, but its
computation requires some care, especially w.r.t. the
Jacobian as shown in the sequel.

Define P* as the antecedent MF matrix of parameters
with dimension [4 x #]. That means:

PA PA . PA (16)
l,a 2,a n,a
pa = Pl,/zla Pz/,lb Pn/,lb
|ptop P
1,¢c 2,¢ n,c
])l,Ad Pz/,ld Pn/,ld

where wa is the w parameter, w € {a,b,c,d}, of the

&y

v antecedent MF, v € [L,n]. The > expression

must be computed for the gradient w.rt. each
parameter. Then the equation 11 becomes:

17)
aJ (
P =P’ -n,el —-
[ k+1 an [ k an nA |:8PA :|4xn
And refer to equation 8 to obtain:
r r r T (18)
2] 43) | 12¢)
i=1 i=1 i=1
I’lfl Plela Pnfla
f50) f50) fse
i=1 i=1 i=1
& _| P Py Py
4 r r »
s f5e) e
i=1 i=1 i=1
I’li Plelc Pnflc
fs0) f50) {0
i=1 i=1 i=1
R{J P2f1d P”Ad Jdxn
but
Ci=xi(x).Dfz(Y,) , Viellr] (19)
and
’ (20)
2. C =l ()DL + .+ oy, (0).DE(Y,)
i=1
then
02y

0 ; C.
[Z J _ma D)), | kg (0).DE,)]

or? P, P2,

v, W

As the consequent MF does not depend on the
antecedent MF parameters, the equation 21 becomes:

. (22)

6(2 C.j
=) oy ()] Bl ()]

W_sz(m.T+...+Dﬁ(Y,)—a%

Analogously one can obtain the consequent MF
training expressions. Define P® as the consequent



MF matrix of parameters with dimension [4 x m].
That s,

PI,C:J PZ?a e Pn?a (23)
pe = Plcb be Pn(,jb
- PC PC . PC
1,¢c 2,¢ n,c
Pl,c;z Pfd nyd

where wa is the w parameter, w € {a,b,c,d}, of the

&y

v consequent MF, v e [1.m]. The > expression

must be computed for the gradient w.rt each
parameter. Then the equation 11 becomes:

[Pkil Lxm = [Pkc Lxm - nce{ i }
4dxm

oP*

24

And referring to equation 8 one obtains that:

, , .o\ 29)
a(;q} a(;c,} a(;c,}
B, P, Py,
a(ic,} a(ic,} a(ic,}
i=1 i=1 i=1
» | S A
op* a(iq} a(r CJ a(r CJ
i=1 i=1 i=1
P p P
a(iq} a( r Cl} a( r Cl}
i=1 i=1 i=1
I R T
and then

- (26)
0 C,
[Z J _ Al GDE®)] iy (0D,
opP° oprs, oprs,

v, W

As the antecedent MF does not depend on the
consequent MF parameters, the equation 26

becomes:
: @n
a(z c.j
5 oD)] olpe,)]
aR}?W =Py (x) an,cW ot g (x) an,cW
3.2 Gradient expressions
oy . oy :
Note that — = ¢ is easily obtained but —— requires
oy oP

the x(® and 92Z() expressions. For instance,
or* opr*

using trapezoidal MF as shown in figure 3, it can be
expressed as function of its own parameters by:
0 if x<a

_ 28
x—a ifa<x<b (28)

b
,u(x): 1 ifb<x<c
X

if c<x<d

QU

c—
0 if x>d

and the gradient of the MF with respect to those
parameters {a,b,c.d} are given by:

-1
G,u(x) _ ul(yx_)g if a<x<b
Oa 0 otherwise
_ (29)
G,u(x): %? ifa<x<b
ob 0 otherwise
Gy(x) _ _C'Li(x) ifc<x<d
de 0 otherwise
-1
G,u(x) _ —uix—)d ife<x<d
od

0 otherwise

Those are necessary to update the antecedent MF. It
is important to note that the gradients are undefined
at points x=a, x=b, x=c and x=d. However, this fact
does not yield any difficulty in the present
formulation.

To update the consequent ones, derive the equation 3

and obtain the %(CY,-) expressions:

oP

oDf(Y,) _h[-Qa+b)K, +K,
oa 3 K?

oDf(Y) _ h[-(2b+a)K, +K, (30)
R K?

DY) _h[Qe+d)K, - K,
oc 3 K?

DY) _ ﬁ{(Zd +0) K, + Kz}

od 3 K!
where
K,=d+c—b-a (31)
and
Ky=&+F-b-d+cd-ab (32)



3.3 Computation of the Jacobian

The Jacobian defined in 18 and 25 are ecasy to
compute. Note that if a MF is not in a rule, the
gradient result is zero. Thus, it is possible to reduce
the computation effort just computing the gradient
for the MFs that are included in each rule. To
compute the Jacobian, use the following algorithm:

Algorithm 1: Jacobian computation

a) Define D* = Y and D¢ = y
oP* oP¢

b) Initialize D" = zeros(4,n)
¢) Initialize D¢ = zeros(4,m)
d) Read the input signal x
¢) Foreachrulei = /.r

Compute Dfz(Yi)

Compute [x;(x)

For each antecedent MF v = [.n

If the MF, is included in the rule i

e DA(1,v) = D*(1,v) + Dfz(Y). O1nxu(®

oF,
e DA(2.v) =D*(2v) + Dfz(Y,). x(®)
P},
e D*(3,v) =D"(3.v) + Dfz(Y). mx(®)
opP;,
e D*(4,v) = D*4.v) + Dfz(Y). Onx(®)
opr;,
End If
End For
For each consequent MF v = /..m
If the MF, is included in the rule 7
« D°(1y) =D+, ARET)]
o oP’,
e D°2V) =DQW) +, (IR
o oPS,
« D°G)=DGW +, IAREL)
X’ oP’
« DU =D@) + , D))
XI an,Cd
End If
End For

3.4 Training membership functions

As proposed in the ANFIS approach, consider the

antecedent MF as constants to train the consequents

and vice-versa. Consider P* and P as proposed

before and use the data pairs (x,y;) to train the model.

The training algorithm becomes:

a) Read x and y;

b) Propagate the x input through the fuzzy net
Compute Ci=xi(x).Dfz(Y,), Vie[lr] (33)

Obtain the fuzzy output

4 (34

JA/ =2.C
i=1
¢) Compute the error
e=J-y (33)
and
aoJ . (36)

87)7 =
d) Use the Algorithm 1 to compute the Jacobian

7 Y 37
PA R A
aP 4xn aP 4xm

¢) Update the antecedent MF
Consider P© as constant

Update P*
38)
aJ (
P =P -n, el —
[ k+1 an [ k an 7714 |:8PA :|4xn
f) Update the consequent MF
Consider P* as constant
Update P©
39)
aJ (
< =|P°| —-m.e
k+1 Lxm [ k Lxm nC aPC .

4 Numerical Results
Let the desired function be:

y=x"-3x" -4 +x+40 (40)

and consider the input UD as [-3,5]. The output UD
can be [0,200]. Initialize the antecedent and
consequent MF as proposed in [28], and for this
simple example, 8/10 antecedent/consequent MF are
used respectively. The initial SSE was 1331 and the
figure 4 shows the results after 1000 iterations and
the MF parameters becomes:

(2300 —300 —300 —2.00] (“41)
~300 -230 -230 —152
2229 142 —142 -038

[PA]: ~130 055 055 324
0,06 2,69 294 409

269 359 360 405
359 428 430 487
430 500 500 500

and



(13,95 —142 —139 830 (42)
1022 2222 2229 22729
30,00 4437 5010 50,10
5591 6695 7584 8381
- 7538 8889 8889 8889
1000 1151 1111 1222
1222 1333 1333 1444
1439 1553 1647 1647
1678 1778 1778 1889
| 1888 2000 2001 2001
Antecedent MF SSE=13571

150
100 ; j

B0 H-p A - f - ]

| -

— Target function
--- Fuzzy fitting

T, 17 41

-2 0 2 4
Figure 4: Numerical results

We also compared the computational effort, with the
[28] method that uses the discretized Mamdani
approach to compute the fuzzy output. It shows that
this new approach was at least 15 x faster.

5 Conclusions

The computational effort required in the Mamdani
defuzzification procedure make it nonpractical, and
many fuzzy applications was developed using TSK
proposition even losing some essential information
contained in the consequent MF. For example,
ANFIS is one of the most usual neurofuzzy
approach. It becomes very practical because it uses a
simple but efficient fuzzy equations (TSK structure)
and training procedures, such as gradient descent or
least squares.

This article presents a neurofuzzy method to train the
antecedent and consequent MF for the Mamdani-like
fuzzy structure proposed in [29]. As expected, the
computational effort is reduced and becomes
compatible with the TSK. The results may remind

the TSK approach using the weighted sum to
compute f/ and consequent MF as constants (zero

order TSK), however, the fuzzy properties of the
consequent MF are different (See [29] for details).
The advantages of keeping the consequent MF and
the lower computational effort to train them, must
characterize a very useful tool in application of the
concepts of fuzzy reasoning and neurofuzzy
techniques such as backpropagation.
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