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Abstract: - The purpose of this work is to present a new fuzzy structure, which is computationally efficient. The
main idea is to modify the original Mamdani fuzzy structure, specially the rule aggregation and defuzzification
procedures. The computational effort is similar to that required by Takagi-Sugeno-Kang structures.
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1 Introduction
The fuzzy structure proposed by E.H. Mamdani in
[18] fully reflects the concept of fuzzyness proposed
by L.A. Zadeh [34]. The Mamdani fuzzy structure is
intuitive, provides heuristic insight, has received
widespread acceptance in both industrial and
academic media and it suits well with respect to
interactions with humans. The fuzzy/neurofuzzy
approaches have been used with success in
modelling and control of systems. Their use as new
powerful tools is widely reported in the literature
(e.g.  [8], [9], [12], [15], [17], [21], [24], [29], [31],
and [33]). In spite of these qualities, the
computational effort that is required in the Mamdani
defuzzification procedure is considerable and it may
be difficult to implement in real applications,
specially when on-line training is employed. On the
other hand, the Takagi-Sugeno-Kang (TSK) fuzzy
models [26], [28] can be treated in a computational
efficient way and is amenable to elegant
mathematical analysis, attracting considerable
interest (e.g. [1], [2], [4], [6], [7], [11], [13], [14],
[16], [19], [20], [22], [25], [27], and [32]). However,
TSK is less intuitive as the resulting consequent
membership functions (MFs).

This work proposes some modifications in the
computation of outputs, which aim to substantially
reduce the computational effort needed in Mamdani
fuzzy structures.

Section 2 presents a brief review to the Mamdani
and TSK fuzzy structures. Section 3 shows the
proposed modifications and the derived properties.
In section 4, an example with asymmetric trapezoidal
antecedent and consequent MF is shown.

2 Mamdani and TSK fuzzy structures
One of the basic differences between the Mamdani
and TSK fuzzy models lies on the fact that the
consequent are, respectively, fuzzy and crisp sets.
Hence, the computation procedure required to obtain
the output signals are not the same. While in the case

of TSK fuzzy models the output is found using a
very simple formula (weighted average, weighted
sum), Mamdani fuzzy models require a higher
computational effort to defuzzification procedure.

Firstly, adequate operators must be selected to
represent the “and”, “or” and “implication”
linguistic symbols, as well as the rule aggregation
and defuzzification methods. The sum-product
composition is frequently used in practical
implementations (e.g. [3], [4], [5], [10], [11], [12],
[23], [25]), i.e., the product is made to correspond to
and and implication, the sum to or and rule
aggregation function. Also, the centroid as a
common defuzzification method yield useful
properties and are necessary in the implementation
of training procedures, such as the ones based on the
gradient expressions.

For the sake of simplicity and to avoid a heavy
notation, only SISO structures are considered,
although the general case leads to similar equations.
Define x as the input and y as the output signals.
Also:

• X1, ..., Xn are the n antecedent MF
• Y1, ..., Ym are the m consequent MF
• R1, ..., Rr are the r rules

Generally, the fuzzy reasoning can be expressed
through rules such as:

Rj :  If x is X j  then y  is Y j (1)
where X j ∈[ X1,...,Xn] and Y j ∈[ Y1,...,Yn]

2.1 Output of Discrete Mamdani Structures
Let both the antecedent and consequent MF be of
triangular, trapezoidal or Gaussian form. Note that
the rule aggregation method could generate complex
membership functions such as illustrated in Figure 2
and that its centroid must be found to determine the
fuzzy output. Therefore, in theory, an integral must
be computed over the output universe of discourse
(UD). Usually the integral is approximated by a
summation following a discretezation procedure.



Let the output UD be [ymin,ymax]. If λ is the
number of discretezation points, let

Rout = [ymin; ymin+∆; ymin+2∆;...; ymax]T

where ∆ = (ymax-ymin)/(λ-1). Then for each rule i, the
consequent is given by

Ci=µXi(x). µYi(Rout),   ∀ i ∈ [1,r] (2)

as graphically represented in Figure 1.

Figure 1: Each rule
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then, using the sum operator as the rule aggregation
method, CA is simply
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The aggregated output membership function (still to
be normalised and then deffuzyfied) is:
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or, alternatively,

 CA=[CA1  CA2  ...  CAλ]1xλ (5)
The vector CAn is obtained from CA by
normalization, i.e.

CAn =

∑
λ

=1j
jCA

CA
(6)

so that the fuzzy output becomes

ŷ =Rout.Can (7)

Figure 2: Rules aggregation

Note that this procedure is the centroid
defuzzification (with approximation introduced by
discretezation) as shown in Figure 2.

2.2 Output of TSK Structures
The TSK fuzzy structure is characterised by their
consequent MF that are restricted to singletons (crisp
sets), which may be constant or linear functions of
the input, as proposed initially in [28]. Generally
Yi=fi(x) so that the C matrix becomes:
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The aggregation of consequents yields
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and the fuzzy output is easily found by
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This procedure to compute the fuzzy output is known
as weighted average. When the denominator is
deleted the procedure is known as weighted sum.

2.3 The computational effort
Note that the effort in processing the antecedent MFs
are equal for both fuzzy structures. The difference
lies on the construction of the C matrix.

In the computation of the fuzzy output through
the discrete Mamdani structure λ is, as defined, the
number of columns of C and also the precision in the
discretezation of the output UD. For instance,
suppose that the output UD is limited to the range
[0,10] and to minimize the discretezation tolerance
of 0.01 is used. Note that the output UD
discretezation generates λ = 1000 and the dimension
of C becomes [r x 1000], making the method
somewhat non-practical. On other hand, the fuzzy
output through TSK structure is very simple and the
dimension of C is always [r x 1].

2.4 Output of Fuzzy Structures
Let us analyse the behaviour and properties of the
outputs for both Mamdani and TSK fuzzy structures.

2.4.1 Mamdani fuzzy structure
At first, define the function Dfz(MF) which stands
for the operation defuzzify (computation of the fuzzy



output), given a known MF (e.g. triangular,
trapezoidal, Gaussian...), based on the centroid
method.
1. Triangular MF, Yi=[a  b  c] where a,b,c are the

triangular MF parameters and h is its height. The
defuzzification formula becomes:

Dfz(Yi)= )(
3

cba
h

++ (10)

2. Trapezoidal MF, Yi=[a  b  c d ] where a,b,c,d are
the trapezoidal MF parameters and h is its height.
The defuzzification formula becomes:
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3. Gaussian MF, Yi= [σ, c] where σ, c are the
Gaussian MF parameters and h is its height. The
defuzzification formula becomes:

Dfz(Yi)=h.c (12)

Since the MFs to be defuzzified are usually of much
complex morphology, it is interesting to analyse the
defuzzification process when the input changes
(whole input UD). In this context, let the MFs be a
square (Sq) and an asymmetric triangle (Tr) both
described by A, B and C parameters, as shown in the
Figure 3. Let h=1  and the simple fuzzy rule-base:

If x is X1 then y is Sq
If x is X2 then y is Tr (13)

Define αs and αt as the respective weights that are
provided by the antecedent MF when the input value
is equal x.

αs =µX1(x) ;    αt =µX2(x) (14)
The fuzzy output is the centroid of the area shown in
Figure 4, which can be found by using the general
expression:

Figure 3: Fuzzy output computation, example

Figure 4: Rules aggregation to compute fuzzy output
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Note that the MF in this example is very simple and
a closed formula for the centroid could be found and,
moreover, discretezation was not needed.

Note also that the weight αs and αt are found for
each input value, considering the morphology of the
respective antecedent MF. For example, for the
entire input UD αs and αt are piecewise linear in the
input values if the antecedent MF are triangular or
trapezoidal. However, one should mention (see (15)
above) that the linear properties of the weights αs

and αt  do not yield linearity with respect to ŷ .

2.4.2 TSK fuzzy structure
Consider the simple fuzzy rule-base:

If x is X1 then y = f1(x)
If x is X2 then y = f2(x) (16)

The fuzzy output is computed as:
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where ∑µ
i

Xi x)( =µX1(x)+ µX2(x) (18)

and µX1(x) and µX2(x) represent the weight of each
rule. In the special case where ∑µ

i
Xi x)( =1 and f i(x)

are constant, the antecedent MF properties defines
the weight as well as the fuzzy output behaviour. For
example, for the entire input UD, the weights are
piecewise linear in the input values if the antecedents
MF are triangular or trapezoidal.

3 Mamdani-like fuzzy structure
In spite of the qualities of Mamdani fuzzy structures,
the TSK has received widespread acceptance in
fuzzy reasoning, especially when training and
optimisation of the MF are pursued. This section is
devoted to describe a new fuzzy structure, which is
computationally efficient and preserves the main
advantages of the Mamdani structure.

3.1 Defuzzify each consequent MF
individually

To find the output of Mamdani fuzzy structures, it is
necessary to perform integration or to use an
approximation such as the discretezation shown in
Figure 2. Here it is proposed an alternative procedure
where defuzzification is performed on individual
weighted MFs corresponding to each rule. Basically,
the centroid of each individual weighted MF can be
found directly from its parameters using (10)-(12).
Some authors refers to the problem of equivalence of
prior defuzzification followed by aggregation or
prior aggregation followed by defuzzification (see
pp. 386 of [15]) and also pp. 80 of [12]).

Defining T as the vector of the centroid co-
ordinates of each consequent MF



Ti=Dfz(Yi)  ,   ∀ i∈ [1,r] (19)
each rule gives

Ci=µXi(x).Ti  ,   ∀ i∈ [1,r] (20)
and the C matrix can be written as

C=

1

22

11

).(

).(
).(

2

1

rxrXr

X

X

TxC

TxC
TxC

r 



















µ=

µ=
µ=

M
(21)

Finally, aggregation leads to
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3.2 Properties

3.2.1 Computational effort
The simplest case of the TSK fuzzy structure is
obtained by setting its consequent MF as constant
values. The proposed scheme based on the T vector
requires comparable computational effort, which is
significantly smaller than Mamdani case. This is due
to the fact that Yi is fully characterised by its
parameters and its centroid Ti=Dfz(Yi) is a real
number. In other words, the computational effort is
basically the same since instead of crisp values, the
centroid co-ordinates are used in the final stage of
defuzzification process.

3.2.2 Shape of the input-output function
The fuzzy output is computed as (22), or component
wise
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By inspection of (23), it is easily noticed that the
fuzzy output follows the weighted sum of antecedent
MF. For instance, if µXi(x) are piecewise linear ∀ i ∈
[1,r], i.e. µXi(x)=ai.x+bi (triangular or trapezoidal
antecedent MF) then the fuzzy output becomes a sum
of straight lines (see example in the next section).
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3.2.3 Universal approximation
As seen in the last section, the linearity between the
height and the centroid co-ordinates of consequent
MFs allows the shaping of the output as a connection
of portions of the antecedent MFs. This property can
be explored for universal approximation of
functions, as illustrated by the following example.
Consider:
1. Two trapezoidal antecedent MF whose

parameters are defined as the MF_X rows:
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2. Two trapezoidal consequent MF whose
parameters are defined as MF_Y rows:
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3. Two rules:
If x is Xi then y is YI  ,     i=1,2 (27)

Then, finding the T vector:
T = [T1,T2] = [Dfz(Y1) ,  Dfz(Y2)] (28)

where:
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fuzzy output:
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As Ti is constant ∀ i ∈ [1,r], the fuzzy output mirrors
the µX1(x) and µX2(x) characteristics.

Using the antecedent MF as proposed in equation
(25), each one of them is characterised by four linear
parts:

1. µXi(x) = 0 3. µXi(x) = 1
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iii) For µX1(x) = 1
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Note that for whole antecedent MF conditions, the
fuzzy output result will always be a linear
composition. Recall that a large class of functions
can be approximated to an arbitrary precision by a
sufficient number of line-segments, and so the
proposed fuzzy structure can be used to provide a
versatile tool in many applications where such ability
is required.

4 Numerical examples
For the next examples define the input UD as [0,10]
and consider two antecedent MFs
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that are presented in Figure 5.

Figure 5: Input MF

4.1 TSK fuzzy output
In the first example the output of a TSK fuzzy
structure with the fuzzy rule-base is considered:

If x is X1 then y = -0.5x+4
If x is X2 then y = x-2 (31)

In the second example the fuzzy consequent as
singletons and the rule base are considered:

If x is X1 then y = 2
If x is X2 then y = 9 (32)

Figure 6: TSK results with weighted average

Figure 6 shows the results corresponding to the
weighted average formula. Non-linear as expected.
Now, by using the weighted sum to obtain the fuzzy
output for the same examples, one can see in Figure
7 that example 1 is still non-linear. In example 2
however the weighted sum procedure combined with
crisp set outputs is a combination of linear segments.

Figure 7: TSK results with weighted sum

4.2 Mamdani fuzzy output
Define the consequent MF as

MF_Y= 
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which is graphically represented in Figure 8, and
consider the simple rule-base:

If x is X1 then y = Y1

If x is X2 then y = Y2
(34)

Figure 8: Output MF

Figure 9 shows the results for the whole input UD
and it is clearly non-linear.



Figure 9: Mamdani fuzzy output results

4.3 Mamdani-like fuzzy output
For the same consequent MFs that were used in the
Mamdani example in the last section the results are
shown in Figure 10.

Note that the fuzzy output is a combination of
linear segments where the initial and final points are
defined by the antecedent MF parameters.

5 Conclusions
The computational effort that is required in the
Mamdani defuzzification procedure might be
prohibitive in many applications. On the other hand
TSK structure is computationally more economical,
but the consequent membership functions are of less
intuitive form.

Figure 10: Mamdani-like results

In this paper a new approach is proposed to
minimise the computational effort while the main
advantages of Mamdani fuzzy structures are
preserved. The main idea is to defuzzify each rule
before aggregating them.

The computational effort is of the same order as
required by TSK scheme.

Under a linearity assumption between the
localisation of the co-ordinates of the centroid and
the height of the consequent MF, the proposed fuzzy
structure provides an easy way of approximating
functions by simple combination of the antecedent
MFs.
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