SIMULATION ANALYSIS OF DOSE RESPONSE IN THE TREATMENT OF AIDS
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Abstract

This work concems the problem of optimizing the
drug doses in the treatment of AIDS by looking for a
balance between the therapeutic response and the side
effects. Extensive computer simulation and comparison with
the constant dose scheme evaluate the results. For some few
cases the results are also compared with actual clinical data,
A mathematical model describing the dynamics of HIV
virus and CD4 cells is initially fitted to actual published
clinical data. The identified model is then used to compute
the sub-optimal drug doses for the treatment of AIDS by a
direct method of optimization using a performance index of
Bolza type. The sub-optimal treatment scheme is shown to
achieve a therapeutic response close to the constant dose
strategy, but with lower cost, as measured by the proposed
performance index.

INTRODUCTION

Mathematical models of dynamical systems i the
form of differential equations are used extensively, for
example, in computer simulations for investigation of the
dynamics of viral and lymphocyile populations. The model
used in this work is an adapted version of the one proposed
by Tan and Wu, 1998 A performance index which takes
into account the number of non-infected CD4 cells and the
administered doses of the drugs evaluate the effectiveness of
a particular treatment scheme. The optimal control problem
resulting by combining the mathematical model and the
performance index is solved numerically by direct
optimization techniques.

MATHEMATICAL MODELS

A number of mathematical models have been proposed
in the field of immunology, which can be found, for
instance, in Murray ef af, 1998, Mitiler et af, 1998, Wick ,
1999, Behrens et al, 1999, Tan and Wu, 1998, Tan and
Xiang, 1999, Nowak er al, 1996, Nowak er af, 1991,
Nowak er al, 1997, Nowak ef al, 1995, Regoes ef af, 1998
and Wein et af, 1998, among other works. The model in
Nowak et al. (1991) considers. a system of ordinary
differential equations with four variables x, v, v, and 7
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which denote respectively strain-specific CD4 cells, total
CD4 cells, virus population and cross-reactive CD4 cells.
The authors simulate the mathematical model with
immunotherapy starting at different times after infection.
Mowak and Bangham (1996) compare three dynamic models
of HIV infection. The first is the simpler and contains three
variables x, v and v denoting, respectively, uninfected cells,
infected cells and free wirus. Another model uses four
variables where the first three variables are again x, ¥, v as
before and the fourth wvariable z represents CTL
Iymphocytes. The last model has four variables and includes
the variability of virus. The model in Philips, (1996)
invelves four differential equations in variables R, L, E and
V which represent, respectively, uninfected CD4, latently
infected cells, infected cells and free viruses. This model can
be used to simulate the initial phase of infection. Nowak er
al, (1995) presented a new model that considers the
interaction between CTL and the multiple epitopes of a
genetically wvariable pathogen. The version proposed in
Nowak et al (1997) includes the population of mutant
virus, and provides analytic approximation for the rate of
emergence of resistant viruses. This model comprises five
equations and the results match the experimental data of
three infected patients treated with Neverapine (NVP). In
Murray er al. (1998) the proposed model uses eight
differential equations with the variables such as: naive cells;
cells that do not recognize HIV but are only activated by
other antigen; cells that recognize HIV and are stimulated by
its presence to divide and produce activated cells; memory
cells specific to HIV; free viruses and viruses that have lost
their ability to attach to CD4 T cells.

Wick (1999) proposed a model of T cell dynamics in
which rising activation rates produced falling T-cell counts
and showed that apoptosis and proliferation must nearly
balance. His model has four differential equations composed
by: naive T cells and memery cells in activated and resting
states. The model in Zaric ef al. (1998) focuses on the
simulation of protease inhibitors and development of drug-
resistant HIV strains. The model is composed of eleven
differential equations and there is a coupling berween
organisms that are infected with resistant and non-resistant
HIV strains. The analysis shows that multi-drug therapy can
lead to significantly high prevalence of multi-drug-resistant



HIV strains. Tan and Wu, (1998, 1999) proposed a discrete
stochastic model for the HIV pathogenesis under treatment
by antiviral drugs. The model has four differential equations
and stochastic terms in the variables that represent the
number of latently infected T cells. It has also stochastic
components on infectious free HIV and non-infectious free
HIV variables, =

The mathematical model presented by Tan and Wu,
(1998) with deterministic terms was adopted here. The
dynamics is described by the differential equations

X =S(x4}+ l(xnxz:-xﬁ ]"1_ x {1, +k|(m|}‘4}
X, = 031(1(‘“:)“4K| = X fl, + kz{mz}}
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with x; = x(t) = uninfected cells CD4™ T; x; = xit) =
infected cells CD4" T latently; %3 = xs{t) = infected cells
CD4" T active; %4 = x4t) = free virus HIV; s rate of
generation of x; from precursors; r: rate of stimulated
growth of X} Tau: maximum T cells population level; p;:
death rate of x;; [z : death rate of x;; ys : death rate of xy;
M. death rate of x4; k;: infection rate from x, to x: by virus;
k: conversion rate from x; to x3; N: number of infectious
viruses produced by an actively infected T cell: 8: viral
concentration needed to decrease.

In the model by Tan and Wu, 1998, x; cells are
stimulated to proliferate to generate new x, cells with rate
A(x1, X3, X3) in the presence of antigen and HIV {Eq. 3).
Without the presence of HIV, the rate of generation is S{xs)
(Eq. 2). In the presence of free HIV (x4), uninfected cells x,
can be infected to become x; cells and x; cells, depending of
probability of cells become actively or latently infected with
rate @. The % cells can be activated to become x5 cells. The
activation rate is kz The x; cells are short lived and will
normally be killed upon activation with death rate [1;. The
X1, %z cells and x; free virus have finite life and the death rate
in this model is W, 2 and . respectively. When x, cells
die free viruses xy are released with rate N(t) described by
(4). Drugs such as reverse transeriptase inhibitors
(zidovudine and lamivudine) and protease inhibitors
(saquinavir, indinavir and ritonavir) affect the parameters k,
and kj,
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THE SUB-OPTIMAL CONTROL
The objective in a general optimal control problem is
to find a control-input m(t) that minimizes the cost function

Ym]=hixt, )+ [ e x(o), meo), e (5)

where t; and t, are the initial and final times; h and g are
given positive scalar functions. Moreover, x(.) and mi.) are
constrained by the state equation

= F(x(t;l,m{t],t) (6)

In the specific problem treated in this work, x =[ x; x2
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where kig, ko, o, o, &, $z, Vi, Yz, € and g; are
constants.

Optimal control problems can be solved by indirect or
direct methods. In the solution using an indirect method,
one is required to solve a boundary value problem with 2n
equations corresponding to n state and n adjoint variables if
Maximum Principle is invoked or to solve a partial
differential equation if Dynamic Programming is used
(Kirk, 1970; Lewis, 1986, Bulirsh, 1980). In the solution
using a direct method, one attempts to minimize directly
the performance measure (7) after a suitable parameterisation
of the admissible contral inputs u(t). Here, a direct method
proposed by Jacob, (1972) is used. The parameterisation of
the input functions u(t) invelves, in the present case, a
subset of the coefficients of expansion in sine functions and
only approximations to the actual optimal uft) are obtained.
However, those sub-optimal control inputs are found to
provide improved treatment results when compared to fixed
drug doses.



Three cases are considered in this work: monotherapy
(either reverse twranscriptase inhibitor or protease inhibitor)
and combination of both.

First Case
Sub-optimal administration of reverse transcriptase inhibitor

In this case k; is assumed to be constant (m:(t) = 0 %)

while k; depends on the drug dose:
k(t) =k, &™™" (12)

Second Case

Sub-optimal administration of protease inibitor

In this case k, is assumed to be constant (m,(t) = 0 V)
while k; depends on the drug dose:

kS (1) = ke

Third Case
Sub-optimal administration of a combination of reverse-
transcriptase and protease inhibitors

In this case, both k; and k; are allowed to wvary
simultaneously

1('I ( [) o k"l[le_{ilw|I1

(13)

(14)
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PARAMETERISATION OF THE CONTROL INPUT
This work uses a direct method to minimize the

cost function (5) based on the numerical algorithm proposed

by Jacob, (1972). available in the form of a computer
program called EXTREM.

m,(t)=c; + ¢, sin(tm/t,)+
+e, [2sin(tm/t, Joos(tm/ 1, )] +
+c, [3sin(tm/t Jeos(m/1,)* -

+sin’ (i 1, )]+

(16)
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+e, f(n-Dsin(mm/t, jeos" *(tn/1,) —
+[(m = 1)/ 3]sin’ (1 t)eos" (i, )+
+[(n = 1)/ 5sin®(tr/ 1,y cos"*(tm/t, ) - ...
T

Eg. 16 shows the form of each component of the control
input m(t) which is represented by an expansion over the
interval [0, t7].
SIMULATION RESULTS

The actual clinical data were extracted from Tan (Tan
and Wu, 1998) and refers to a patient that contracted HIV at

the age of 11 years and his T cell counts were measured on
16 oceasions.

Years 3.2 3.9 4.7 5.2 5.9 f.6 7.2 7.6
T cell counts/mm’ 1254 10035 1022 1105 372 432 520 660
Years B.2 8.6 9,2 9.6 10.3 10.7 11.2 11.7
T cell counts/mm’ 686 357 440 584 508 583 328 345
Table -1- Clinical data of CD4 T Cells of an HIV-Infected Patient {Tan and Wu, 1998}

5 R Tmax L Lz L3 o K, K Ms

10 0.52 1700 0.4 0.5 0.0 2.4 2.410° 3.10" | 1400

9 0] B 35 x,(0) X:(0) x3(0) x4{0) tr (days)

10° 1 10" 65470 357 10 100 133352 224

Table -2- Parameters used in the simulations
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Figure 1

The data are reproduced in Table 1. Firstly the model
parameters were adjusted by an identification procedure to
match the available data. Simulation results in the figures 1-
3 correspend 1o the present case study, In the figures the
actual data set is shown to fit the simulated model using the
identified parameters and without reaument.

The control variables were constrained to be in the
range (300 mg) = mi(t) = (900 mg) {reverse transcriptase
inhibitor} and (300 mg) < ma(t) < (900 mg) {prolease
inhibiter}, respectively, in the case of patient A.
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For others patients the constraints were relaxed ta (0
mg) = my(t) £ (1500 mg) and (0 mg) < mu(t) < (1500 mg).
In all cases the expression of the control variable was where

the constants oy = oy = 0.005 can be interpreted as the
activity of the drugs.

These controls ms(t). m:(t) were found by applying an
optimization method for minimizing the performance index
(5).

It 15 worth noting that the optimal drug doses varies
from patient to patient, because of the differences on the
actual models parameters.

Figure 6 shows typical trajectories (projections on X,
% plane) under sub-optimal and constant dose treatment
schemes.
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CONCLUSION

The new performance index help the numerical method
to solve the problem and to found a solution fitted of actual
data. Of all patients, only one case shows the same final
result with actual data. All others treatment (theoretical)
were better than the conventional treatment with the
constant administration of drugs.

The polynomial approach was good using degree 5 and
seven terms in the representation of controls variables and
the optimal solutions run about 10 times in all cases
studied. We use three types of control in the administration
of drugs: only reverse transcriptase inhibitor, only protease
inhibitor and cocktail of drugs with two types of inhibitors.
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The results indicate that the best situation is with the
use of cocktails, but when we use the optimal control in the
performance index, the results with cocktail in optimal
administration was better than the one without it. This is
important because there is some relation between the
performance index and side effects of drugs in the patients.

This article showed a method to design of treatment
schemes using optimal control theory for patients with
AlDS.
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