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Abstract
This work concerns the problem of optimizing the drug doses
in the treatment of AIDS by looking for a balance between the
therapeutic response and the side effects. Extensive computer
simulation and comparison with the constant dose scheme
evaluate the results. For some few cases the results are also
compared with actual clinical data. A mathematical model
describing the dynamics of HIV virus and CD4 cells is
initially fitted to actual published clinical data. The identified
model is then used to compute the sub-optimal drug doses for
the treatment of AIDS by a direct method of optimization
using a performance index of Bolza type. The sub-optimal
treatment scheme is shown to achieve a therapeutic response
close to the constant dose strategy, but with lower cost, as
measured by the proposed performance index.

1 - Introduction
Mathematical models of dynamical systems in the form of
differential equations are used extensively, for example, in
computer simulations for investigation of the dynamics of
viral and lymphocyte populations. The model used in this
work is an adapted version of the one proposed by Tan, Wu in
[16]. A performance index, which takes into account the
number of non-infected CD4 cells, and the administered doses
of the drugs evaluate the effectiveness of a particular
treatment scheme. The optimal control problem resulting by
combining the mathematical model and the performance index
is solved numerically by direct optimization techniques. The
problem of optimal control of the chemotherapy of HIV has
also been considered by Kirschner, Lenhart & Serbin in [5].

2 - Mathematical Models
A number of mathematical models have been proposed in the
field of immunology, which can be found, for instance, in [1,
6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18 and 19], , among other
works. The model in [10] considers a system of ordinary
differential equations with four variables: xi, y, vi and zi which
denote respectively strain-specific CD4 cells, total CD4 cells,
virus population and cross-reactive CD4 cells. The authors
simulate the mathematical model with immunotherapy starting
at different times after infection. The work in [11] compares
three dynamic models of HIV infection. The first is the
simpler and contains three variables x, y and v denoting,
respectively, uninfected cells, infected cells and free virus.
Another model uses four variables where the first three
variables are again x, y, v as before and the fourth variable z
represents CTL lymphocytes. The last model has four
variables and includes the variability of virus. The model in
[14] involves four differential equations in variables R, L, E
and V which represent, respectively, uninfected CD4, latent
infected cells, infected cells and free viruses. This model can
be used to simulate the initial phase of infection. [13]
presented a new model that considers the interaction between
CTL and the multiple epitopes of a genetically variable
pathogen. The version proposed in [12] includes the
population of mutant virus, and provides analytic
approximation for the rate of emergence of resistant viruses.
This model comprises five equations and the results match the
experimental data of three infected patients treated with
Neverapine (NVP). In [9] the proposed model uses eight
differential equations with variables such as: naïve cells; cells
that do not recognize HIV but are only activated by other
antigen; cells that recognize HIV and are stimulated by its
presence to divide and produce activated cells; memory cells
specific to HIV; free viruses and viruses that have lost their
ability to attach to CD4 T cells.
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Wick in [19] proposed a model of T cell dynamics in which
rising activation rates produced falling T-cell counts and
showed that apoptosis and proliferation must nearly balance.
His model has four differential equations composed by: naïve
T cells and memory cells in activated and resting states. The
model in [20] focuses on the simulation of protease inhibitors
and development of drug-resistant HIV strains. The model is
composed of eleven differential equations and there is a
coupling between organisms that are infected with resistant
and non-resistant HIV strains. The analysis shows that multi-
drug therapy can lead to significantly high prevalence of
multi-drug-resistant HIV strains. In [16,17] it is proposed a
discrete stochastic model for the HIV pathogenesis under
treatment by antiviral drugs. The model has four differential
equations and stochastic terms in the variables that represent
the number of latent infected T cells. It has also stochastic
components on infectious free HIV and non-infectious free
HIV variables.

The mathematical model presented by Tan, Wu in [16] with
deterministic terms was adopted here. The dynamics is
described by the differential equations
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with x1 = x1(t) ≡ uninfected CD4+ T cells; x2 = x2(t) ≡ latent
infected CD4+ T cells; x3 = x3(t) ≡ active infected CD4+ T
cells; x4 = x4(t) ≡ free virus HIV; s: rate of generation of x1
from precursors cells; r: rate of stimulated growth of x1; Tmax:
maximum T cells population level; µ1: death rate of x1; µ2 :
death rate of x2; µ3 : death rate of x3; µv: death rate of x4; k1:
infection rate from x1 to x2 by virus; k2: conversion rate from
x2 to x3; N: number of infectious viruses produced by an
active infected T cell. The terms β1, β2, N0, θ and ω are
constants. The manipulated variables (control variables) are
m1 (reverse transcriptase inhibitor) and m2 (protease
inhibitor).

In the model by Tan, Wu in [16], x1 cells are stimulated to
proliferate to generate new x1 cells with rate λ(x1, x2, x3) in
the presence of antigen and HIV (Equation 3). Without the
presence of HIV, the rate of generation is S(x4) (Equation 2).

In the presence of free HIV (x4), uninfected cells x1 can be
infected to become x2 cells and x3 cells, depending of
probability of cells become active or latent infected with rate
ω. The x2 cells can be activated to become x3 cells. The
activation rate is k2. The x3 cells are short lived and will
normally be killed upon activation with death rate µ3. The x1,
x2 cells and x4 free virus have finite life and the death rate in
this model is µ1, µ2 and µv respectively. When x3 cells die free
viruses x4 are released with rate N(t) described by (4). Drugs
such as reverse transcriptase inhibitors (zidovudine and
lamivudine) and protease inhibitors (saquinavir, indinavir and
ritonavir) affect the parameters k1 and k2.

3 - The Sub-Optimal Control
The objective in a general optimal control problem is to find a
control-input m(t) that minimizes the cost function
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where t0 and tf are the initial and final times; h and g are given
positive scalar functions. Moreover, x(.) and m(.) are
constrained by the state equation
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In the specific problem treated in this work,

x = [ x1 x2 x3 x4 ]t ∈  Rn    and    m = [ m1 m2 ]t
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where k10, k20, α1, α2, φ1, φ2, γ1, γ2, ε1 and ε2 are constants.

Optimal control problems can be solved by indirect or direct
methods. In the solution using an indirect method, one is
required to solve a boundary value problem with 2n equations
corresponding to n state and n adjoint variables if Maximum
Principle is invoked or to solve a partial differential equation
if Dynamic Programming [2, 4, 7] is used. In the solution



using a direct method, one attempts to minimize directly the
performance measure (7) after a suitable parameterisation of
the admissible control inputs m(t). Here, a direct method
proposed by Jacob in [3] is used. The parameterisation of the
input function m(t) involves, in the present case, a subset of
the coefficients of expansion in sine functions and only
approximations to the actual optimal m(t) are obtained.
However, those sub-optimal control inputs are found to
provide improved treatment results when compared to fixed
drug doses.

Three cases are considered in this work: monotherapy (either
reverse transcriptase inhibitor or protease inhibitor) and
combination of both.

First Case

Sub-optimal administration of reverse transcriptase inhibitor

In this case k2 is assumed to be constant (m2(t) = 0 ∀ t) while
k1 depends on the drug dose:
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Second Case

Sub-optimal administration of protease inhibitor

In this case k1 is assumed to be constant (m1(t) = 0 ∀ t) while
k2 depends on the drug dose:
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Third Case

Sub-optimal administration of a combination of reverse-
transcriptase and protease inhibitors

In this case, both k1 and k2 are allowed to vary simultaneously
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4 - Parameterisation of the Input Control
This work uses a direct method to minimize the cost function
(5) based on the numerical algorithm proposed by Jacob in
[3], available in the form of a computer program called
EXTREM. Each component of the control input m(t) is
represented by an expansion over the interval [0, tf] with the
form
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Years 3.2 3.9 4.7
T cell counts/mm3 1254 1005 1022
Years 8.2 8.6 9.2
T cell counts/mm3 686 357 440

Table - 1
Clinical data of CD4 T Cells of an HIV-Infected Patient [16]

Years 5.2 5.9 6.6 7.2 7.6
T cell
counts/mm3 1105 372 432 520 660

Years 9.6 10.3 10.7 11.2 11.7
T cell
counts/mm3 584 508 583 328 345

Table - 2
Clinical data of CD4 T Cells of an HIV-Infected Patient [16]

(continued)

S R Tmax K1 K2

10 0.52 1700 2.410-5 3.10-1

Table - 3
Parameters used in the simulations

θ ω β1 x4(0) tf  (days)
106 1 10-1 133352 224

Table - 4
Parameters used in the simulations (continued)

µ1 µ2 µ3 µv N0

0.4 0.5 0.03 2.4 1400

Table - 5
Parameters used in the simulations (continued)

β2 x1(0) X2(0) x3(0)
65470 357 10 100

Table - 6
Parameters used in the simulations (continued)



5 - Simulation Results
The actual clinical data were extracted from Tan [16] and
refers to a patient that contracted HIV at the age of 11 years
and his T cell counts were measured on 16 occasions.
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Figure 1 - Time profile of x1 under various treatment schemes
The data are reproduced in Tables 1 and 2 and the parameters
used in the simulations in Tables 3, 4, 5 and 6. Firstly the
model parameters were adjusted by an identification
procedure to match the available data. Simulation results in
the figures 1-5 correspond to the present case study. In the
figures the actual data set is shown to fit the simulated model
using the identified parameters and without treatment.
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Figure 2 - Time profile of  latent infected CD4 T cells under
various treatment schemes

The control variables were constrained to be in the range (300
mg) ≤ m1(t) ≤ (900 mg) {reverse transcriptase inhibitor} and

(300 mg) ≤ m2(t) ≤ (900 mg) {protease inhibitor},
respectively.
For others patients the constraints were relaxed to (0 mg) ≤
m1(t) ≤ (1500 mg) and (0 mg) ≤ m2(t) ≤ (1500 mg). In all
cases the expression of the control variable was where the
constants α1 = α2 = 0.005 can be interpreted as the activity of
the drugs.
These controls m1(t), m2(t) were found by applying an
optimization method for minimizing the performance index
(5).
It is worth noting that the optimal drug doses varies from
patient to patient, because of the differences on the actual
models parameters.
Figure 6 shows typical trajectories (projections on x4, x1
plane) under sub-optimal and constant dose treatment
schemes.
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Figure 3 - Time profile of active infected CD4 T cells under
various treatment schemes

6 - Conclusion
The new performance index help the numerical method to
solve the problem and to found a solution fitted of actual data.
Of all patients, only one case shows the same final result with
actual data. All others treatment (theoretical) were better than
the conventional treatment with the constant administration of
drugs.
The polynomial approach was good using degree 5 and seven
terms in the representation of controls variables and the
optimal solutions run about 10 times in all cases studied. We
use three types of control in the administration of drugs: only
reverse transcriptase inhibitor, only protease inhibitor and
cocktail of drugs with two types of inhibitors.
The results indicate that the best situation is with the use of
cocktails, but when we use the optimal control in the
performance index, the results with cocktail in optimal
administration was better than the one without it. This is



important because there is some relation between the
performance index and side effects of drugs in the patients.
This article showed a method to design of treatment schemes
using optimal control theory for patients with AIDS.
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Figure 4 - Time profile of the viral load under various
tretament schemes
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