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ABSTRACT: This paper concerns the use of fuzzy structures to model linear dynamic systems. A systematic method is 
proposed to generate the rules and also select the antecedent and consequent membership functions directly from the 
mathematical expression. The procedure is applied to the Takagi-Sugeno-Kang fuzzy structures and later adapted to the 
Mamdani fuzzy structures. It is shown that the Mamdani structure are useful to model nonlinear systems obtained by 
perturbing linear dynamic systems. 
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1 Introduction 
The adaptive-fuzzy and neurofuzzy approaches have been 
used with success in modelling and control of dynamic 
systems, as widely reported in the recent literature (e.g. 
[1]–[6] ). One of the difficulties in using fuzzy structures 
is the task of finding suitable membership functions and 
the rules associating them. Many articles propose methods 
to train and optimize membership functions and rules (e.g. 
[7]–[12]). Relatively few works concern analogous 
methods that are applicable to Mamdani fuzzy structure. 
Even though TSK fuzzy structure can be treated in a 
computational efficient way and is amenable to elegant 
mathematical analysis, Mamdani fuzzy structure can be 
more efficient in some cases of nonlinear systems. 
This work is organized as follows: Section 2 provides an 
overview on basic fuzzy structures. Section 3 describes 
three examples modelled using TSK fuzzy structure. 
Section 4 presents the antecedent membership functions 
(hereafter denoted MF) properties that are useful in the 
modelling process. In section 5 the main idea is extended 
to general linear system models using TSK. Section 6 
discuss the corresponding version in the case of Mamdani 
fuzzy structures and its properties. Section 7 gives an 
overview of the obtained results. 

2 TSK and Mamdani fuzzy structure 
One of the basic differences between the Mamdani and 
TSK fuzzy structures is the fact that the consequents are, 
respectively, fuzzy and crisp sets. Hence, the procedures 
involved in the computation of the output signals are 
distinct. While in the case of TSK fuzzy structure the 
output is computed with a very simple formula (weighted 
average, weighted sum), Mamdani fuzzy structure require 
higher computational effort because one is required to 
compute a whole membership function which is then 
defuzzyfied. This advantage to the TSK approach make it 
highly useful in spite of the more intuitive nature of 
Mamdani fuzzy reasoning in terms of dealing with 
uncertainty. 
This section presents a brief review of both fuzzy 
structures. Initially, adequate operators must be selected to 
represent the and, or and implication linguistic symbols, 

as well as the rule aggregation and defuzzyfication 
methods The sum-product composition is frequently used 
in practical implementations  (e.g. [2],[18],[21],[27],[30]), 
and the operators satisfy the gradient expressions. In order 
to provide results that are directly implementable in a 
digital computer, a discretized version of the Mamdani 
fuzzy structure is adopted (full details of the discretization 
process can be found in [30] and [31]. 
The antecedent part of the rules are equal for both fuzzy 
structures. The difference lies on the way that the 
consequent part is organized. A typical rule-based TSK 
fuzzy structure with two inputs and one output expressed 
as 

If  a is Ai and b is Bi then y is yi ( 1)

 
where Ai ∈ {A1,...,ANA} and Bi ∈ {B1,...,BNB} represents 
the antecedent MF of the ith rule that corresponds to the 
input variables a,b respectively. The sets {A1,...,ANA} and 
Bi ∈ {B1,...,BNB} are pre-defined antecedent MFs. The ith 
rule produces a partial output of form 

yi = fi (a,b) ( 2)

 
where fi are pre-defined functions. In the present work, 

fi (a,b) = ri  ∀ a,b ( 3)

 
with ri = constant, therefore characterizing a crisp 
consequent MF for the ith rule. The adoption of a 
particular fi is required for comparison purposes with 
respect to Mamdani fuzzy structures. Aggregating the 
partial outputs of each rule, the output is given by 

22

2211 ..
ww

ywyw
y

+
+

=  
( 4)

 

where wi = AND(µAi(a), µBi(b)) is the weight of the ith rule. 
The inference procedure is graphically represented in 
Figure 1 and Figure 2 shows the equivalent ANFIS 
structure that yield the same output expression. 
 



 
Figure 1: TSK rules weight 

 
Figure 2: Equivalent ANFIS  

On the other hand, Mamdani fuzzy structure produce 
fuzzy consequents that must be aggregated and 
defuzzyfied. A typical Mamdani fuzzy structure with two 
inputs and one output can be expressed as 

If  a is Ai and b is Bi then y is Yi ( 5)

 
where Ai, Bi and notably Yi are all fuzzy sets, represented 
by µAi(a), µBi(b) and µYi(yi) respectively. Therefore, the 
higher computational effort is to aggregate and defuzzify 
the various consequent. 

3 TSK for model 
This section describes 3 simple examples of modelling 
using the TSK fuzzy structure. Denote by x the input and 
by y the output signals of all of these examples. 
The objective is define the rules and the MF necessary to 
fit the proposed function or model of the dynamic system 
using a TSK fuzzy structure. The same procedure used in 
the TSK case can also be applied to Mamdani fuzzy 
structures. 

3.1 Linear case 

Let y and x be related by 
y = a.x + b ( 6)

 
3.1.1 Antecedent membership functions 
Define [0,1] as the input universe of discourse (UD) and 
the triangular MF as shown in (a), where: 
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3.1.2 Consequent membership functions 
Define [0,1] as the output UD and set constants values to 
be the crisp consequent MF (singletons) as shown in 
Figure 3 (b) where: 
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Figure 3: Antecedent and consequent MF 

3.1.3 The rules 

If x is Xs  then  y is S 
If x is Xb  then  y is B 

( 9)

 

3.1.4 Numerical results 
It can be immediately verified that the consequent 
membership functions S and B as proposed fits the linear 
expression 6. Note that this objective can be achieved by 
just 2 points which are necessary to represent the proposed 
function. 

 
Figure 4:  Linear function 

3.2 Linear dynamic system - case 1 

Let G(s) be the transfer function 
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and T the sample time. Then the discrete transfer function 
is: 
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which is associated to the sequence: 
yk = e-aT.yk-1 + (1- e-aT).xk-1 ( 12)

 
In order to simplify the notation, set: 

λ1 = e-aT 

λ2 = (1- e-aT) 

( 13)

 

Now the equation 12 becomes: 
yk = λ1.yk-1 + λ2.xk-1 ( 14)

 
Note that this linear system can be represented by a three-
dimensional plane characterized by the table: 
 

yk-1 xk-1 yk  
0 0 0  
0 1 λ2 ( 15)
1 0 λ1  
1 1 1  

 
which is graphically represented in Figure 5. 



 
Figure 5: Plan to be fitted 

3.2.1 Antecedent membership functions 
Define [0,1] as the input UD and set the antecedent MF as 
in Figure 6, where: 
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Figure 6: Antecedent MF 

3.2.2 Consequent membership functions 
Define [0,1] as the output UD and set the following 
constants values to be the crisp consequent MF 
(singletons): 

{ 0, λ1, λ2, 1 } ( 17)

 
3.2.3 The rules 

 If yk-1 is Ys and xk-1 is Xs  then  yk is 0 
If yk-1 is Ys and xk-1 is Xb  then  yk is λ2 
If yk-1 is Yb and xk-1 is Xs  then  yk is λ1 
If yk-1 is Yb and xk-1 is Xb  then  yk is 1 

( 18)

 

3.2.4 Numerical results 
Let a=1 and T=0.4s. Then the equation 14 becomes 

yk = 0,67.yk-1 + 0,33.xk-1 ( 19)

 
The simulation results are presented in Figure 7. 

3.3 Linear dynamic system - case 2 

Let G(s) be the transfer function 
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and T the sample time. Then the discrete transfer function 
is: 

 
Figure 7: Simulation results 
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that can be represented as the sequence: 
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In order to simplify the notation, set: 
λ1 = e-aT 

λ2 = a/b 

λ3 = ⎟⎟
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Now the equation 12 becomes: 
yk = λ1.yk-1 + λ2.xk + λ3.xk-1 ( 24)

 
Note that these linear system is represented by a linear 
hyperplane that is characterized by the table: 
 

yk-1 xk Xk-1 yk  
0 0 0 0  
0 0 1 λ3  
0 1 0 λ2  
0 1 1 λ2+λ3 ( 25)
1 0 0 λ1  
1 0 1 λ1+λ3  
1 1 0 λ1+λ2  
1 1 1 1  

 
As in the Figure 5, the solution is again linear but the 
hyperplane can not be shown because the 4th dimension is 
now required. 
3.3.1 Antecedent membership functions 
Define [0,1] as the input UD and set the antecedent MF as 
in Figure 6 and equation 16. 



3.3.2 Consequent  membership functions 
Define [0,1] as the output UD and set the following 
constants values to be the crisp consequent MF 
(singletons): 

{ 0, λ3, λ2, λ2+λ3, λ1, λ1+λ3, λ1+λ2, 1 } ( 26)

Remember that the output UD was restricted to [0,1], 
then, if it is necessary, restrict the singletons values. 
3.3.3 The rules 
Antecedents: 
If yk-1 is Ys and xk-1 is Xs and xk-1 is Xs → yk is 0 
If yk-1 is Ys and xk-1 is Xs and xk-1 is Xb → yk is λ3 
If yk-1 is Ys and xk-1 is Xb and xk-1 is Xs → yk is λ2 
If yk-1 is Ys and xk-1 is Xb and xk-1 is Xb→ yk is λ2+λ3 
If yk-1 is Yb and xk-1 is Xs and xk-1 is Xs → yk is λ1 
If yk-1 is Yb and xk-1 is Xs and xk-1 is Xb→ yk is λ1+λ3 
If yk-1 is Yb and xk-1 is Xb and xk-1 is Xs→ yk is λ1+λ2 
If yk-1 is Yb and xk-1 is Xb and xk-1 is Xb → yk is 1 

( 27)

3.3.4 Numerical results 
Define a=2, b=4 and T=0.2s. Then the equation 24 
becomes: 

yk = 0,67.yk-1 + 0,5.xk –0,17.xk-1 ( 28)

 
and the Figura 8 shows the obtained results. 

 
Figura 8: Simulation results 

4 The choice of antecedent MFs 
The examples in the preceding section used a particular 
form of antecedent MFs. In order to generalize the results 
on linear models which were presented by using simple 
examples, consider the TSK case with consequent MF as 
singletons, while the rules and MF are as proposed in the 
section 3.1. Then the output value can be computed as: 
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where S and B were defined as the singleton values to the 
consequent MF with S+B=1. Also, note that the proposed 
antecedent MFs are such that 

)(1)( xx XbXs µµ −=  ( 30)

Therefore,  

BSBxy Xs +−= )).((µ  ( 31)

i.e. the linear function y = a.x + b corresponds simply to: 
a=B-S and b=B, as proposed in equation 8. 
The other two examples follow the same reasoning 
because of equation 31. 

5 Generalization 
Consider a system transfer function G(s) and T the sample 
time. Then the sampled version of the system is governed 
by 

yk = α1yk-1+...+αnyk-n+β0xk+...+βmxk-m ( 32)

Define the generalized antecedent MF as shown in Figure 
9.  

 
Figure 9: Generalized anteceden MF 

For sake of simplicity, consider Xs and Xb as the 
representation of x-small and x-big that represents the x 
proximity to 0 and 1 respectively (analogously, Ys and Yb 
variables). 
Based on equation 32 complete de binary table: 
 
yk-1 ... yk-n xk ... xk-m yk  
0 0...0 0 0 0...0 0 0  
0 0...0 0 0 0...0 1 βm  
: : : : : : :  
0 0...0 0 1 0...0 0 β0 ( 33)
: : : : : : :  
0 0...0 1 0 0...0 0 αn  
0 0...0 1 0 0...0 1 αn+βm  
: : : : : : :  
1 0...0 0 0 0...0 0 α1  
: : : : : : :  
1 1 1 1 1 1 Σ  
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1
01

=+= ∑∑∑
==

m

i
i

n

i
i βα  

( 34)

As proposed, the maximum number of required rules will 
be the length of the preceding table. To compose the rules 
just associate 0 to Xs, Ys and 1 to Xb, Yb, and follow the 
whole table.  

6 Generalization to Mamdani structure 
It is possible to replace the TSK fuzzy structure using the 
equivalent Mamdani structure just replacing the singletons 
values by triangular MFs as thin as possible and centered 
at the TSK selected singletons. The computational effort 
becomes greater but the final results are exactly the same. 
What is then the advantage? What happens when the 
triangular MF change their width or their form? 



The Figure 10 shows the Mamdani versions of the same 
dynamic systems of the previous examples illustrated in 
3.2, but with the consequent MFs modified in such a way 
as to have larger widths. Hence, the figure show that the 
Mamdani fuzzy structures have the ability to model 
nonlinear systems that are perturbations of nominal linear 
models by simply adapting the width of the consequent 
MFs. keeping the same λ1 and λ2  parameters. Note that 
the crisp output values in the TSK method with fixed 
f(a,b) = ri (equation 3) represent a hyperplane 
parametrized by λ1 and λ2 and is unable to adapt the 
hypersurfaces as shown in Figure 10. 

 
Figure 10: Nonlinear surface – example 1 

6.1 Nonlinear fuzzy approximation - numerical 
example 

Consider the nonlinear function: 
yk = λ1.(yk-1)2 + λ2.(xk-1)2 ( 35)

that is graphically represented in 

 
Figure 11: Nonlinear function 

Comparing the nonlinear equation (35) with the linear 
equation (14) one can observe that the points {0, λ1, λ2, 1} 
maintains the respective positions, so that it is impossible 
to make the TSK with fixed fi(.,.) to reproduce the desired 
output behavior. 
On other hand, with Mamdani fuzzy structures, the same 
antecedent MF and rules presented in 3.2 together with 
consequents: 
- Instead of 0, use a gaussian MF ( 0,03 ; 0 ) 

- Instead of 1, use a gaussian MF ( 0,06 ; 1,13 ) 

( 36)

yields the desired approximation, as presented in Figure 
12. Compare figures 11 and 12 to verify the successful 
results. 

 
Figure 12: Nonlinear fuzzy model 

7 Conclusions 
A simple systematic procedure was proposed obtain 
models that represent known dynamical linear systems 
using fuzzy structures for both, TSK and Mamdani fuzzy 
structures. However, modifications on the width of the 
consequent MF in Mamdani fuzzy structures provide an 
extra degree of freedom that can be of value in modelling 
nonlinear systems obtained by perturbing a linear dynamic 
system. 
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