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Abstract 

This work concerns a particular application of the Optimal 
Control Theory to a model related to HIV infection 
dynamics. The mathematical model adopted in this work 
was proposed by Nowak et al., 1996 and describes the 
dynamics of viral concentration in terms of interaction 
with CD4 cells and the cytotoxic T lymphocytes, which are 
responsible for the immune defense of the organism. The 
control variable is the drug dose, which, in turn, affects the 
rate of infection of CD4 cells by HIV virus. The cost 
function to be minimized is a weighted sum of the final 
viral load and the accumulated side effects. Simulation 
results show that the optimal control scheme can achieve 
improved quality of the treatment in terms of reduction in 
the viral load and quantity of administered drugs, but has 
the inconvenience related to the necessity of frequent and 
periodic laboratory analysis to provide feedback 
information to adjust the doses. 

 
 

1. Introduction 
 

Mathematical and computational models have received 
growing recognition as a powerful tool for analysis in 
several branches of the human knowledge such as biology, 
economics and sociology and are no longer confined to 
traditionally quantitative fields of exact and technical 
sciences such as physics and engineering (LEVIN, 1997). 
A number of works deal with the mathematical models for 
computer simulation of infectious diseases, particularly by 
viruses: NOWAK et al. 1991,1995,1996,1997; REGOES 
et al., 1998; WEIN et al. 1998; ASACHENKOV et al., 
1994; BRUNI et al., 1975; CHERRUAULT et al., 1986; 
MOHLER et al., 1980; MURRAY, 1980. The 
mathematical models can be useful to describe situations 
that will be impossible to test in humans, such as required 
in ‘what if’ analysis and can also provide a basis for a 
quantitative approach, for instance, to optimize the 
administration of drugs. 

In this work, the optimal control theory is used to reduce 
the final viral load while taking into account the 
accumulated side effect. The optimal control theory has 
been applied to many problems in engineering (CESARI, 
1983; MOHLER ET al., 1980) and there exist a number of 
efficient numerical methods to find the solution (STOER 
and BULIRSH, 1980).  
The mathematical model is of crucial importance and the 
one proposed in NOWAK et al., 1991, is used here. The 
model comprises a system of four non-linear ordinary 
differential equations that describe the number of 
uninfected CD4 cells, infected cells, free virus and 
cytotoxic T lymphocytes. 

 
 

2. The Mathematical Model 
 

The dynamic model proposed by NOWAK AND 
BANGHAM, 1996, consists of a system of four non-linear 
ordinary differential equations that specifically describe 
the variation of the variables x(t), y(t), v(t) and z(t) in 
function of the time t ∈ R+. These variables represent, 
respectively, the amount of the healthy CD4 cells (x), 
infected CD4 cells (y), free virus (v) and the HIV-antigen 
specific cytotoxic T lymphocytes (z).  
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Appropriate initial conditions are assumed to be given 
(boundary conditions) and in order to avoid numerical 
difficulties during the integration, a normalization of the 
variables are introduced. 



The real parameters required in the model are: λ = rate of 
production of infected cells; D = mortality rate of the 
infected cells; a-rate of natural death of infected cells; β(t) 
= infection rate of healthy CD4 cells by HIV virus; p = rate 
of death of infected cells; b = rate of natural decline of 
CTL; c = rate of production of CTL; u-rate of natural 
decline of free virus; k = rate of production of free virus 
(which may be time variant).  
In this model, the amount of healthy CD4 cells reproduce 
according to a fixed rate λ, but are attacked by the virus 
produced by other cells of its type, so that reproduction 
rate should decrease with to the existent amount of CD4, 
namely -Dx(t). Moreover, as those cells interact with the 
virus, its reproduction rate decreases according to the term 
- βx(t)v(t).  
The infected cells depend on the density of cells in 
organisms that are amenable to be infected by the virus. 
Therefore, the growth of those cells y(t) will be 
proportional to the amount of healthy cells, which are 
succeptible to be infected x(t), and of the viral load v(t), 
with weighting factor β. This growth must be discounted 
by a term that represents the cells in terminal phase of 
destruction represented by ay(t) and also another term that 
is associated with the number of cells destroyed by the 
lymphocytes, py(t)z(t).  
The density of virus v(t) increases in proportion to the 
infected cells once their replication depends essentially on 
the viral DNA code inside the cell, and this is represented 
in the model by k(t)y(t). However, the virus can be 
destroyed by the lymphocytes or suffer from erroneous 
decoding by reverse transcriptase enzyme (GALLO, 
1994), which yields the term uv(t).  
The model takes into account the production of cytotoxic T 
lymphocytes by the organism. This production depends on 
the antigenic characteristics of the viral particles, 
represented by cy(t)z(t) and a natural decline rate -bz(t).  

 
 

3. The Optimal Control 
 

The problem of drug administration in cast into the optimal 
control form, where the dose m(t) affect the infection rate 
of healthy CD4 cells β(t). The objective is to minimize the 
cost functional 
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subject to the state equations (1). The proposed cost 
functional J attempts to balance the accumulated side 
effect of the drug (the integral term) and the final viral load 
(the terminal cost). The choice of the weight Ψ depends on 
the subjective evaluation of the relative importance of the 
side effects and the reduction of the viral load over a fixed 
time horizon by the clinical staff. 
It is assumed that the parameter β presents an exponential 
characteristic with respect to m,  

β( ) ( )t e m t= −   (3) 

where m(t) is the drug dose at time t, so that β becomes 
small when large doses m are used but can never become 
zero.  
The boundary conditions are: 

 x(0) = x0 
 y(0) = y0 (4) 
 v(0) = v0 
 z(0) = z0 
 x(tf) = y(tf) = v(tf) = z(tf) = free 

The Hamiltonian for this optimal control problem is: 
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where the λx, λy, λv, λz are the adjoint variables or co-state 
variables and λJ corresponds to the augmented state 
introduced to transform the original cost function in Bolza 
form into Mayer form (CESARI, 1983). 
For the sake of simplicity of notation, the following 
shorthand will be used for the state variables x(t) ≡ x; 
y(t)≡y; v(t) ≡ v; z(t) ≡ z and the controls variables m(t) ≡ m 
(and, correspondingly, β(t) ≡ β).. 
The differential equations governing the adjoint variables 
are obtained by differentiation of the Hamiltonian function, 
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which, in a more explicit form become: 

d
dt

d v v

d
dt

a pz k cz

d
dt

x x u

d
dt

py cy b

x
x x y

y
y y v z

v
x y v

z
y z z

λ
λ λ β λ β

λ
λ λ λ λ

λ
λ β λ β λ

λ
λ λ λ

= + −

= + − −

= − +

= − +

 (7) 

The value of the optimal control variable at each instant 
can be found by noting that it minimizes the Hamiltonian 
(Pontriagin’s Minimum Principle, CESARI, 1983) and, 
therefore, must satisfy the necessary condition: 

∂
∂

H
m∗ = 0  (8) 

yielding the expression for the optimal drug dose: 
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Solutions to general non-linear optimal control problems 
may be difficult to be found and a numerical method must 
be invoked. The integration of the differential equations 
was carried out using the Runge-Kutta-Felberg 7/8 
integrator with adaptive step-sizes (STOER et al, 1980), 

while the two point boundary value problem (TPBVP) 
corresponding to the present optimal control problem 
(equations 10 – 14) was solved by a step descent numerical 
method. The step descent method is fast at initial stages, 
presenting quadratic convergence, but when the iterations 
approach the optimum point, it becomes slower.  
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Figure 1 - Optimal Drug Doses (Optimal Control Law) 

 
 
4. The Results 

 
The state equations (1) were simulated for the cases β = 1 
(no treatment) and β = β*(t) (optimal drug doses, Figure 1) 
using the initials conditions and the values of parameters 
obtained from NOWAK AND BANGHAM, 1996, 
presented in Table 1.  
In Figure 1, the number of uninfected CD4 cells is seen to 
decay rapidly for non-treated patients (without control), 
while it is kept at an adequate level when optimal 
treatment scheme is used (optimal control). Figure 2 shows 
that the number of infected CD4 cells decline with 
treatment, while without treatment, it tends to increase. 
The same happens with the number of free virus, as shown 
in Figure 3. The initial increase in the number of 
lymphocytes in untreated patients in seen in Figure 4.  
Modifications of the weight Ψ or moderate uncertainties in 
the model parameters (±10%) change the value of the 
optimal doses, but the overall shape of the curves (Figures 
1-5) are preserved. Therefore, despite the difficulty with 
the estimation of the model parameters and the subjective 
nature of the choice of the cost functional, the proposed 
method provides some interesting insight into the 
dynamics of AIDS and may be a useful tool in medical 
training. 

 
 

Parameters Values 
λ 1.0 
d 1.0 
a 0.8 
β 1.0 
p 0.05 
b 0.01 
c 0.1 
u 0.01107 
k 1.0 

 
Variables Values 

x(0) 1.0 
y(0) 0.2 
v(0) 0.8 
z(0) 0.03 

tf 12 
 

Table 1 Values of the model parameters and initial 
condition used in the computer simulation 
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Figure 2 - Number of Uninfected CD4 Cells for the cases  

without control and with optimal control 
 
 
5. Conclusions 

 
The optimal control theory can be used to determine the 
optimal drug doses if a mathematical model of the 
infection and the values of the model parameters are 
available. In general, the task of estimating the model 
parameters for each patient may be very difficult to be 
carried out. However, the proposed methodology can still 
be useful in ‘what if’ type of analysis, where the medical 
staff can evaluate the effects of the alternative treatment 

schemes such as pulsed control (high doses applied at 
spaced intervals in time), constant control (moderate doses 
kept constant during a long period), adaptive control (one 
such scheme could be the use of doses that are proportional 
to some easily measurable variable) and others. The 
optimal control scheme yields the best results in terms of 
the chosen cost functional, as verified by extensive 
simulations, if the model is accurate (the model parameters 
are known and effects such as the presence of mutant virus 
are absent). 
 

 

0.00 4.00 8.00 12.00
Time

0.00

0.40

0.80

1.20

In
fe

ct
ed

 C
D

4 
C

el
ls

Without Control

Optimal Control

 
Figure 3 - Number of CD4 Cells infected by HIV virus  for the cases  

without control and with optimal control 
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Figure 4 - Number of Free Virus for the cases without control 

and with optimal control 
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Figure 5 - Number of Lymphocytes for the cases without control 

and with optimal control 
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