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Abstract 

Techniques traditionally used in the study of the 
existence of solutions of nonlinear differential equations 
has recently been used to solve problems of control, 
state estimation and parameter identification of 
nonlinear systems. These techniques often require some 
topological adjustments of either the space of 
admissible input functions U (the control space) or the 
state space X of the system which became possible with 
the use of matched sets introduced by the author in 
[1,2]. The present work places its emphasis on how the 
matched sets can be used to adjust the spaces U and X 
for the problem of nonlinear control as formulated 
below. A summary of the theory of complete matched 
sets is also shown. Moreover, the semigroup approach 
is used so that the distributed parameter systems and 
delay systems can be considered as well as lumped 
parameter systems. 

Keywords: Control, state space, nonlinear systems, 
distributed parameter systems, lumped parameter 
systems. 

1 Introduction 

Some techniques traditionally used in the study of the 
existence of solutions of nonlinear differential equations 
has been extended to solve problems of control, state 
estimation and parameter identification of nonlinear 
systems (see [3,4,5] and also [6]).  
Here we consider systems of the type:  

 
X∈=
++=

0x)0(x
),t(Bu))t(x(N)t(Axx&

 (1) 

where A is a linear operator on an appropriate Hilbert 
space X (the state space), N is a nonlinear operator from 
an input space U to X, and u(.) ∈ U is the control (U 
being a space of functions from the interval [0,T] to the 
input space U of the system). Such systems are often 
called semilinear systems.  
It is assumed that the dynamics of the autonomous part 
of the system (1), i.e., 

X∈== 0x)0(x),t(Axx&  

can be described in terms of a strongly continuous 
semigroup S(t) on X, so that the above formulation 
includes distributed parameter systems and delay 
systems, as well as lumped parameter systems. 

2 The Control Problem 

Clearly for the case of lumped parameter systems we 
have that A is a n × n  matrix, X = Rn and the 
semigroup S(t) becomes 

Ate)t(S =  

The problem of control is to find a control u(.) which 
drives system (1) from the initial state x0 ∈ X to a given 
desired final state xd ∈ X at t = T. System (1) may be 
derived from the linearization of a system described by 
a nonlinear evolution equation such as: 

 0x)0(x),t,u,x(fx ==&  . (2) 

Equation (1) is to be interpreted in the mild sense: 
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with the initial conditions 
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Papers such as [3,5], and also [7] presented some 
techniques to solve the above nonlinear control problem 
(2) using the fixed point of a map Φ: X → X 
constructed on a space X of trajectories x(.) (e.g., X = 
L2(0,T; X)). These techniques often assume that the 
control space U and/or the state space X can be adjusted 
to new spaces U' and X', (with both U ∩ U' and X ∩ X' 
dense on their counterparts U and X respectively) in 
order to the Volterra type operator G (defined on U) 
associated with the nonlinear control problem in its mild 
form (3)  

 ( ) ∫ τττ−=⋅
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have closed range in the space of trajectories X.  
Sometimes however the assumption is that GT (also 
defined on U) given by 
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have closed range in the state space X. Besides, if L 
(defined on X) is the linear operator 

∫ τττ−=⋅
t
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the range of the operator G should be large enough to 
incorporates the set of nonlinear values L(t)Nz(.), for all 
t ∈ [0,T], that is 

Range (G) ⊇ {L(t)Nz(.) : t ∈ [0,T]} 

For simple cases (e.g., U = L2(0,T; X) and X = L2(0,1) ) 
these adjustments were not difficult to be done [7]. 
However, this is not always the case. Here we present 
some results based on matched sets which shows that 
such adjustments are always possible. Actually, this is 
part of a more comprehensive theory developed in [1] 
which shows that if E1 and E2 are inner product spaces 
and Ψ: E1 → E2 is a densely defined linear operator, 
then the topology of E1 and/or E2 can always be 
adjusted such that some topological properties of Ψ 
(such as boundedness or continuity, compactness, 
closed range, etc.) will hold. 

In other words, the spaces U of input control functions 
and/or the space of trajectories X can be adjusted to new 
spaces U' and X' (with U ∩ U' and  X ∩ X' dense on 
their original counterparts U and X respectively) in 
order to some Volterra-type operators, such as G in (4), 
associated with the nonlinear control problem (3) have 
closed range.  
Similarly, when the state space X is infinite 
dimensional, the above adjustment can be done for U 
and X to obtain closed range for GT in (5). 
Also, in the problem of state estimation of infinite 
dimensional systems using fixed point techniques is 
often assumed [3, 7] that the state space X and/or the 
state of output functions Y can be adjusted to new 
spaces X' and Y' (with both X ∩ X'  and Y ∩ Y' dense 
on their original counterparts X and Y respectively) in 
order to some Volterra-type operators (associated with 
the state estimation problem) have closed range. 

3 The Adjustments 
Here we present some results based on matched sets 
which shows that such adjustments are always possible. 
Actually this is part of a comprehensive theory [1, 2] 
which shows that if U and X are inner-product spaces 
and G: U → X is a densely defined linear operator then 
the topology of U and/or X can always be adjusted such 
that some topological properties of G (such as 
boundedness or continuity, compactness, closed range, 
etc.) will hold. The new adjusted spaces U' and X' will 
have the form: 
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with the topology on X' given by the norm 
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where un , xn ∈ F = R or C ; αn βn are real numbers 
satisfying 
 αn > 0 for all n∈Γ , 
 βn > 0 for all n∈Λ , 
and 
 { } { }( )ΛΓ∆φ= Λ∈Γ∈ ,,,,eM nnnn  (8) 

is any complete matched set for the operator G. 

3.1 Matched Sets 

A matched set M is a quintuple of the type above (Eq. 
(8)), consisting of two sequences  

 {en}n∈Γ  and  {φn}n∈Λ  

and three countable sets ∆, Γ and Λ satisfying: 
 en ∈ U for all n ∈ Γ , 

 φn ∈ X for all n ∈ Λ , 

 ∆ ⊆ Γ ∩ Λ and  ∆ non empty. 

Moreover, the following must also hold in order to M to 
be a matched set for the linear operator G 

Gen = φn for all n ∈ ∆ , 
and 

Gen = 0 for all n ∈ Γ \ Λ . 

A matched set M is said to be complete if  

{ } UeSpan nn =Γ∈  

and 
{ } XSpan nn =φ Λ∈  

where the bars represent the closure of the spaces. 

3.2 The Generation of Matched Sets 
There are two different methods for obtaining a 
complete matched set M for a linear operator G. In the 



first method M is generated such that {φn}n∈Λ is a 
complete orthonormal set in the original space X. In the 
second method M is generated such that {en}n∈Γ is a 
complete orthonormal set in the original space U. The 
author presents this in [2]. 
Note that if M is a complete matched set, then both U' 
and X' are in fact Hilbert spaces with inner-product 
given by 
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are complete orthonormal sets in U'and X' respectively. 

4 Operators Associated to G 

Note that if we have a complete matched set M for the 
operator G, then G: U' → X' can be expressed as: 

∑
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with domain of G given by 
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4.1 The Null Space and the Range of G 
Other spaces and operator related with G can be 
expressed in a similar way by using again the sequences 
{en}n∈Γ and {φn}n∈Λ from the matched set. For 
example: the closures of both the Null space of G, 
Null ( )G , and Range of G, Range( )G , are given 
respectively by 
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4.2 Projections 

The orthogonal projections P: U' → U' onto the space 
Null (G) and P: X' → X' onto Range (G) are given 
respectively by 
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4.3 The Adjoint Operator of G 
The adjoint operator of G, G*: D(G) → U' is given by  
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with domain given by 
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4.4 The Pseudo-inverse of G 
The generalised inverse (or pseudo-inverse) of G, that is 
G+: D(G+) → U' is given by 

∑
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with domain given by 
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If we set 2
Unn e=α  for all n ∈ Γ, then U' = U (or at 

least U' ≈ U , i.e., U' is topologically isomorphic to U) 
and similarly, if we set 2

Xnn φ=β  for all n ∈ Λ, then 

X' = X (or at least X' ≈ X, i.e., X' is topologically 
isomorphic to X). However, a different choice of αn 
will change the topology of U to a new space U' (with 
U ∩ U' dense on U) as well as a different choice of βn 
will change the topology of X to a new space X' (with X 
∩ X' dense on X). 

5 The Rules for the Adjustments 

Here is where we establish the relationship between αn 
and βn such that the operator G:U' → X' hold some 
desired topological properties. The following results can 
be proved: 

5.1 Boundedness 



G: U' → X' is a bounded operator if and only if the set 
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5.2 Closed Range 

G: U' → X' has closed range in X' if and only if the set 
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5.3 Compactness 

G: U' → X' is a Hilbert-Schmidt operator if and only if  
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Clearly if G is a Hilbert-Schmidt operator then G is a 
compact (or completely continuous) operator. The 
above results on matched sets provide the rules for the 
adjustment of the spaces U and X. 

6 Example 

For instance, let us consider the semilinear (non-stable) 
system 
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where N is the nonlinearity such as for example: 

 yy)y,y(N && =  , (12) 
or 

 2yy)y,y(N && = . (13) 

This system can easily be re-written in the state space 
form (1) as: 
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equation, if necessary, is: 
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Here the semigroup S(t) is given by 
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and therefore, the state x(t) can be expressed in the form 
(3) by 
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where the operator G from U to some space of functions 
(trajectories) x(.):[0,T] → X = R2 is given by 
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Let us assume that the space U of input functions is 
L2(0,T) for some T > 0. Here the Range (GT) is always 
closed since it has finite dimension (X = R2). Even 
though the Range (G) is a space of functions from [0,T] 
to X and its topology can be adjusted in order to be 
closed.  

We can let {en(.)}n ∈ Γ be any complete orthonormal set 
in L2(0,T), such as for example:  

Γ = N = {1, 2,...} 
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and the space of input controls U' as defined in (6). 
Now, if we set αn = 1, for n = 1, 2,..., the space of input 
controls U becomes U' defined in (6). With this choice 
we have U' ≈ U = L2(0,T).  
However, by a different choice of αn 's we could give 
U' a different topology in order to be either larger or 
smoother than L2(0,T). If αn ≥ 1 for all n = 1, 2,..., (or 
for all n > no , for some finite no ∈ N), then U' will be a 
space of smoother functions. For example, if  
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then U'≈H To
1 0( , )  the Sobolev space of differentiable 

functions on [0,T].  

On the other hand, by setting αn ≤ 1 for all n = 1, 2,..., 
(or for all n > no , n ∈ N, for some finite no ∈ N), then 
U' will be a larger space of functions than L2(0,T). For 
example, if  
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then U'≈H T−1 0( , )  the Sobolev space (distributions). 
Now set ∆ = Λ = Γ = N = {1, 2, ...} , φn (.) as 
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and the space of trajectories X' as defined in (7).  
To give X the same topology as a known space such as, 
for example, L2(0,T;R2), (that is, X' ≈ L2(0,T;R2)) we 
then have to set 

 ,...2,1nfor)R;T,0(Lnn 22 =φ=β  (14) 

However, some nonlinearities such as in the one in (12) 
may force us to work in larger spaces and therefore we 
have to choose different values for the constants βn's. 
They will have to be smaller than the ones chosen in Eq 
(14) above. In that case, in order to have the Range of 
the operator G closed (i.e., Range (G) closed), we will 
also have to choose different αn's. Actually, from Eq 
(10) we know that αn , for n=1, 2, ... must be chosen 
such that the set  

{ } ,...2,1nnn / =βα  

is bounded. For instance, ,...2,1nfor,nn =β=α  
Some nonlinearities however, such the one in (13), 
allow us to work on smoother state spaces X. In this 
case we can also give a smoother topology to both X' 
and U' by an adequate choice of the βn's and the αn's, 
respectively.  
Now the constants βn's will have to be greater than the 
ones chosen in Eq (14) above.  

7 Conclusion 
Here we presented results that provide the rules for the 
topological adjustment of the spaces U (the control 
space) and X (the space of trajectories) and also for the 
adjustment of the spaces U and X (the state space). If G: 
U → X does not satisfy a desired topological property 
(e.g., boundedness, closed range or compactness) then, 
by adjusting the spaces U and X to new spaces U' and 
X' (i.e., by choosing appropriate numbers αn 's and β
n's), G: U' → X' will satisfy the desired topological 
property. Similarly, if GT: U → X does not satisfy a 
desired topological property then, by adjusting the 
spaces U and X to new spaces U' and X' , GT: U' → X' 
will satisfy the desired property. It is also easy to see 
(by using Eqs (9), (10) and (11)) that this adjustment 
(i.e., this choice of αn and βn) can always be such that: 

- only the topology of U is altered (to U'), or  
- only the topology of X is altered (to X'), or  
- both topologies of U and X are altered (to U' and 

X' respectively). 

These adjustment are necessary for us to be able to use 
some techniques developed to solve the nonlinear 
control problem (2) using the fixed point of a map Φ: X 
→ X . 
So, this structure, using matched sets for G: U → X (or 
for GT: U → X) enable us to choose U' and X' (or U' 
and X') according to the desired topological properties 
for G: U' → X' (or GT: U' → X') and the flexibility of 
the problem to let both/either U and/or X (or both/either 
U and/or X ) to be altered.  
In general, large space of functions (such as U = H-1) 
are not desirable since it may contain distributions. 
Even spaces U = L2 may sometimes be unsuitable for 
applications since it contains discontinuous functions. 
The above adjustments allow us to select spaces U' and 
X such that either the operator G or GT have closed 
range and U' ≈ to some smooth space of functions (such 
as H or Ho

1 1 ). 

Loosely speaking, the smoother we want U to be, the 
smoother X will have to be, that is, we shall have to 
restrict to smoother trajectories. 
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