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Abstract: Here is presented an application of Optimal Control to a model describing the 
dynamics of an infection by HIV where mutant forms are present. It extends authors’ 
previous results where mutant drug-resistant HIV virus were absent. The model 
adopted, proposed in (Nowak, et al., 1997) deals with the dynamics of viral 
concentrations. The control is the dose of an alternative drug exhibiting different 
activity from the primitive and mutant HIV viruses. The cost function is a weighted sum 
of the total viral load at a fixed time horizon and the accumulated side effects. 
Simulation results show that the optimal control scheme can achieve improved quality 
of the treatment.  
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1. INTRODUCTION 

 
A number of mathematical models have already been 
developed to describe the population dynamics of 
HIV in patients under drug treatment including the 
case of the presence of drug-resistant mutants 
(Nowak, et al., 1991, 1995, 1996, 1997; Regoes, et 
al., 1998; Wein, et al., 1998; Asachenkov, et al, 
1994; Bruni, et al, 1975; Cherruault, 1986).  

In this work, the optimal control theory is applied to 
a mathematical model proposed in (Nowak, et al., 
1997) comprising five non-linear ordinary 
differential equations that specifically describe the 
variation of the amount of healthy CD4 cells, 
infected CD4 cells, free virus, cells infected by 
mutant virus and mutant virus particles.  

The model takes into account the basic dynamics of 
virus-host cell interactions as well as the effects of 
the immune response on the viral load under 



treatment with a drug that affects the rate of infection 
of CD4 cells by the mutant form of the virus. 
The cost functional has a terminal cost involving the 
total number of HIV virus and an integral term 
involving the dose of the administered drug, so that 
the optimal control problem tends to make a 
compromise between the efficacy of the treatment 
scheme (final viral load) and the side effects 
(accumulated effects of the drug along the time 
horizon). 

The optimal drug administration strategy is computed 
using a numerical method and the results for a typical 
patient (model parameters obtained from the current 
literature) is compared to a classical constant-dose 
therapy.  

It might be very difficult to obtain the numerical 
values of the parameters involved in the model, for 
each patient, and also the weights used in the cost 
functional may depend on subjective evaluation of 
the clinical staff.  

However, the developed numerical tools may be very 
useful as a tool for ‘what if’ type of analysis, where 
sensitivity to a specific drug, magnitude of the side 
effect, the actual cost of the drug, rate of viral 
reproduction and other variables can be adjusted and 
the effects evaluated by computer simulation. 
 
 
2. THE MODEL 
 
The model used in this work was proposed in 
(Nowak, et al., 1997) and comprises the following 
non-linear ordinary differential equations: 
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where the variables are the number of uninfected 
CD4 cells (x), infected CD4 cells (y), free virus (v), 
mutant infected cells (ym) and mutant free virus (vm).  

Appropriate initial conditions are assumed to given 
(boundary conditions) and in order to avoid 
numerical difficulties during the integration, a 
normalization of the variables are carried out.  

The parameters required in the model are:  

λ = rate of production of uninfected cells;  
d = rate of death of uninfected cells;  
a = rate of natural death of infected cells;  
β = rate of production of infected cells;  
βm = rate of production of infected cells by mutant 

free virus;  
u = rate of natural decline of free virus;  
k = rate of production of free virus (which may be 

time variant);  

km = rate of production of free virus (which may be 
time variant);  

ε = probability of mutation from primitive to 
resistant mutant during reverse transcription 
of viral RNA into viral DNA.  

The rate of production of infected cells by mutant 
free virus βm(t) will be controlled by drugs with 
activity of form 

 β β α
m m
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with βmo  the natural rate of production of infected 
cells by mutant free virus and α is related to the 
activity of the drug used. 

In this model, healthy CD4 cells reproduce according 
to a fixed rate λ, but are attacked by the virus 
produced by other cells of its type, so that 
reproduction rate decreases with the current quantity 
of CD4 cells, namely  -dx(t).  

Moreover, as those cells interact with the virus, its 
reproduction rate further decreases according to the 
term  

-βx(t)v(t) 

and with mutant free virus  
-βmxvm. 

The quantity of infected CD4 cells depends on the 
availability of cells in the organism, which are 
amenable to be infected by the virus.  

Therefore, the growth of those cells y(t) will be 
proportional to the existent amount of healthy cells 
x(t) and of free virus v(t), with weighting factor  

β(1-ε). 

This growth must be discounted by a term that 
represents the cells in terminal phase of destruction 
represented by ay(t). 

The increase of the viral load v(t) is proportional to 
the quantity of infected cells since the replication 
depends essentially on the reverse transcripted viral 
DNA code inside the cell, and this is represented in 
the model by ky(t).  

However, the virus can be destroyed by the 
lymphocytes or suffer from erroneous decoding 
(Gallo, 1994), which yields the term uv(t).  
 
 

3. THE FORMULATION OF THE OPTIMAL 
CONTROL 

 
The optimal control theory is used to find the 
solution that minimize (or maximize) a cost (or 
payoff) functional.  

In the present case the cost functional is chosen to be 
a compromise between the viral load at a certain final 
time tf and the accumulated cost related to the 
amount of administered drug, which in turn is related 
to the severity of side effects and also the actual cost 
of the treatment.  



Denoting by J[m(⋅)] the cost achieved by using a 
drug administration policy m(⋅), the objective is : 
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where ψ
1
, ψ

2
 and ψ

3 are the weights that tend to force 
the final states of interest to be close to zero, in this 
case  

y(tf),  ym(tf)  and  vm(tf). 

The variable m(t) is a function m:[0,tf] → R that 
should be selected in such a way as to minimize 
J[m(⋅)] and, in the specific case, represents the drug 
dose administered to the patient.  

The minimization of the cost functional should also 
take into account the dynamics constraints on state, 
given by equations (1).  

The boundary conditions for the components of the 
state are 

 x(0) = x0 
 y(0) = y0 
 v(0) = v0 
 ym(0) = y0 
 vm(0) = vmo 

 x(tf) = y(tf) = v(tf) = ym(tf) = vm(tf) = free 

The Hamiltonian corresponding to the present 
optimal control problem is: 
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The variables λ are the co-state variable or adjoint 
variables and the dynamic system that it represents is 
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The optimal control law minimizes the Hamiltonian 
at each time (Pontriagin’s Minimum Principle, 
Cesari, 1983) and a necessary condition is 

∂
∂
H
m

= 0 

which in the specific problem can be written in a 
more explicit way as 
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The Two-Point Boundary Value Problem (TPBVP), 
initial conditions for the state equations and terminal 
conditions for the co-state equations) that must be 
solved may be hard to tackle analytically.  

Hence, the TPBPV is solved here using an iterative 
numerical method. 

It is assumed that the patient has already started an 
initial treatment so that the replication of the 
primitive virus is null (β = 0) and also, it is expected 
that by the end of the control horizon, v(tf) << vm(tf).  

However, a number of researchers have shown 
(Nowak, 1997) that free mutant HIV virus can begin 
to attack the uninfected cells and the therapy using 
the initial drug may be ineffective.  

Therefore, the present optimization problem 
considers only the doses of an alternative drug that 
acts on the replication of the mutant virus through βm. 
 
 

4. NUMERICAL RESULTS 
 
The numerical method used to solve the present 
optimal control problem is Steepest Descent (Stoer 
and Bulirsh, 1980). The numerical values of the 
model parameters and the initial values for the state 
 
 

Table 1 Parameters of Simulation 
 

Parameters Values 
λ 10 
d 0.01 
β 0.00 (hypothesis) 
βm0 0.005 
ε 0.0001 
a 0.5 
k 10 
u 3 

km 10 
 
 
 

Table 2 Initials Conditions to State Variable 
 

State Variables Initial Values 
 x(0) 30 
y(0) 10 
v(0) 100 

ym(0) 0.001 
vm(0) 0.1 

Final Time 40 days 
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Fig. 1. Uninfected Cells 
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Fig. 2. Infected Cells 
 
 
were obtained from (Nowak, 1997). The parameters 
used in the numerical example are shown in the 
Table 1 and the initial conditions are in the Table 2.  

Fig. 1-3 present three situations that were simulated: 
(i) the case without the alternative drug, (ii) 
administration of the alternative drug at a constant 
dose and (iii) drug doses computed using the optimal 
control theory.  
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Fig. 3. Free Mutant Virus 
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Fig. 4. Optimal Control and the corresponding virus 

growth rate 
 

The curves for the case without control coincide with 
those presented in Nowak, 1997. 

Fig. 4 shows the action of optimal control law. As a 
form of choosing the numerical value for the dose in 
the case of constant control (dose kept constant 
during the whole time horizon), one could use, for 
instance, the maximum value obtained in the optimal 
control strategy (about 2.5, in the specific case).  
 
However, it can be observed in Fig. 5 that the use 
such doses during the whole of the control horizon 
amounts to a significantly larger value of the 
accumulated side effects.  
 
Fig. 5 present the integral term of the cost functional, 
which represents the accumulated side-effects and 
expenses with the actual cost of the drugs, for the 
cases of constant control and optimal control. 
 
 

5. CONCLUSION 
 
The optimal control theory is a powerful tool to solve 
many interesting problems, and here an application to 
the optimization of drug administration policies for 
AIDS patients was proposed.  
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Fig. 5. Integral term of the cost functional, which 
represents the side-effects of the drug 



The results were compared to a conventional clinical 
treatment scheme where the drug dose is constant for 
long time intervals.  

Although the actual numerical values for the model 
parameters are difficult to be identified in actual 
clinical situations (and for each new patient), the 
developed numerical tools allow ‘what if’ type of 
analysis, where sensitivity to the drug, magnitude of 
the side effect, cost of the drug, rate of viral 
reproduction and other variables can be adjusted and 
the effects evaluated by computer simulation. 
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