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ABSTRACT

This paper presents a novel method for fault de-
tection based on the Wavelet Transform. The pro-
posed technique is similar to the classic method of
band-limiting filters, however it is more flexible and
less heuristic. Simulation results for fault detec-
tion in a servomechanism are presented, the wavelet
approach being compared favourably to a standard
observer-based scheme.
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INTRODUCTION

In a wide sense, a fault can be understood as an
unexpected change in the behavior of a system.
Prompt detection of such occurrence is essential to
prevent further deterioration, which could lead to
dangerous operating conditions and even physical
breakdown.

BEarly fault detection (FD) schemes resorted
mainly to physical redundancy, i.e., cross-comparison
of measurements from redundant sensors. However,
in the early 70’s, the increase in computational power
made possible the paradigm of analytical redundancy
[2]. In this case, signals generated by a mathematical
model of the monitored system are compared with
actual measurements, the differences (residues) being
used to detect faults (fig.1).
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Figure 1: Model-based fault detection scheme. Sig-
nal e, is called residue.

In recent years, FD methods have also benefited
from exploiting the decomposition of signals by joint
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time-frequency analysis [4]. Spectral analysis is
important for detecting the periodicity of features
in a signal. However, faults are usually non-
repetitive at their earlier stages, which means that
faults detectable by spectrum analysis alone may
be already much advanced. Also, analysis in the
frequency domain does not cope well with high
frequency bursts associated with some types of
faults. Thus, time information, as well as spectral
information, should be employed by efficient FD
algorithms. In this context, the Wavelet Transform
(WT) has shown to be a useful tool, since it provides
efficient ways to perform non-stationary analysis and
also filter measurement noise [1],[10],[4].

The technique proposed in this paper employs the
WTT to revitalize the classic method of band-limiting
filters [5], which is made more flexible and less
heuristic. A preliminary “tuning” phase is required,
but the computational workload involved is modest.

Simulation results of fault detection in a ser-
vomechanism are presented, the wavelet approach
being compared favourably to a standard observer-
based one.

THE WAVELET DECOMPOSITION OF A
SIGNAL

The WT is a time-frequency or, strictly speaking,
time-scale analysis tool. It is obtained as the inner
product of a signal f(f) with analyzing functions
Vo plt) = w;l/zw(%b), whose width and center
position vary according to parameters a and b. The
WT is thus a function of two variables, as shown in
eq. 1.
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where the hat denotes the Fourier transform, then
the transformation given by eq. 1 is invertible. The
set {¥,p, @ € R*, b € R} is then called a family of
wavelets, derived from the so-called mother wavelet
() through dilation and time-shifting operations.
It is interesting to note that eq. 2 implies 9(0) = 0,
i.e., the mother wavelet should be an oscillation of
zero mean. Besides that, ¥(¢) is usually chosen to



have good localization in time (i.e., compact support
or rapid decay), so that the WT can reflect not only
the frequency content of the analyzed signal, but also
its evolution in time.

Parameter a is also called scale, and is responsible
for changing the central frequency of the wavelet.
Note that, by the ” Uncertainty Principle” [8], there
is always a compromise between time and frequency
resolutions. Decreasing ¢ compresses the wavelet in
time (increasing time resolution), but spreads it in
frequency (losing frequency resolution).

The representation obtained from eq. 1 is
highly redundant, since parameters a and b vary
continuously in R. Hence, a subset of scales and
translations is usually used, leading to the Discrete
Wavelet Transform (DW'T). It can be shown [1] that,
sampling a and b in a dyadic grid, that is,

a=2m b=n2™ (3)

there is no loss of information. Substituting Eq. (3)
in eq. 1, one can write:

(DWTf)(m,n) = (T [)(2",n2"™)
= dmn (Mn€Z) (4)

Connections between the Wavelet Transform and
Subband Coding [9] allowed the development of fast
algorithms for the DW'T, which use banks of digital
filters in a tree structure, as shown in fig. 2. In this
figure, (| 2) denotes the downsampling operation,
which consists of removing each other sample from
a sequence. It is the digital counterpart of the time
compression and also the key to avoid redundancy
and increase computational speed. Note that the
downsampling operator is linear, but it is not shift-

invariant.
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Figure 2: Wavelet decomposition tree. H and L are,
respectively, highpass and lowpass filters. T is the
sampling period.

Coefficients {c} and {d} are related, respectively,
to approximations and details of the signal at
different resolution levels. Since wavelets have a
bandpass nature, the details can be regarded as
frequency slices of the analyzed signal, each situated
approximately between 2-™f, and 2" 1f, (m =
1,2,...), where f; = 1/T is the sampling rate [10].

THE PROPOSED TECHNIQUE

A classic approach to fault detection consists of
comparing, over an adequate frequency band, signals

measured at different points of the system. The basic
premise is that, within a narrow frequency band,
there may be simple dynamic relationships between
signals that are normally very different when viewed
over a wide bandwidth. So, if conveniently selected
passband filters are used to process input and/or
sensor data, the difference between the outputs of
the filters will form a residue. The residue magnitude
exceeding some threshold will indicate modifications
in the information transmission path, i.e., faults.
Fig. 3 illustrates a typical configuration.

disturbances
u | Monitored sensor Y »l Filter1 |5 residue| recnold| Decision
System Device
Filter 2

Figure 3: Input-output consistency check employing
band-limiting filters.

As reported in [5], this method deals satisfacto-
rily with transient inputs (either commands or un-
measured disturbances), which are known to be false
alarm sources.

The theoretical basis of the band-limiting filters
approach lies on Gabor’s minimum-uncertainty cells
[3]. In fact, the output of filters 1 and 2 in fig. 3
should be matched, not only in frequency, but also
in time, that is, their time-frequency cells should
be coincident, whatever the inputs to the system.
This remark allows the establishment of a bridge to
Wavelet Theory.

Due to the passband nature of the wavelet trans-
form, it can replace advantageously the conventional
filters employed here, as shown in fig. 4 (henceforth,
only stable, minimum-phase linear-time-invariant
systems will be considered).
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Figure 4: Wavelet-based input-output consistency
check.

In this figure, G is a transfer function incorpo-
rating the plant and the sensor, and DW'T' repre-
sents the Discrete Wavelet Transform, implemented
by a filter bank.

For ease of mnotation, {Df[n], n € Z} wil
henceforth represent the coeflicients of f, obtained
via the filter bank, at the fixed level of analysis



m (m = 1,2,...). Also, D[f + ¢] will denote the
coefficients of (f + g). Finally, G will designate the
transfer function G after band-limiting, that is:

Gp(jw) = G(jw) B, (w) (5)

where [, is a function of effective support
[27™ (27 fs),27 ™ (27 fs)], whose characteristics de-
pend on the mother wavelet employed.

It should also be noted that monitoring can
be carried out in the wavelet coefficient domain
because reconstruction from the wavelet coefficients
is numerically stable [1]. So, denoting by ||-|| the ¢2
norm of a sequence, then || D]y — u.]|| is large if and
only if ||y — uel| is large at the frequency band of
analysis'.

The Equalizer

The equalizer block in fig. 4 is a digital lowpass or
highpass filter of the form:

<L> (@+ 821 (6)

F
q(2) ]
s € Z; a,BeR

Parameters s, «, 8 should be chosen in order to
minimize

|G (jw) — Eq(iw)] (7)

for the frequencies w in the analysis band. This can
be achieved if the frequency response of the equalizer
matches the magnitude and slope of Gg(jw). Pos-
itive slopes require highpass equalization and nega-
tive slopes, lowpass equalization.

Parameter s reflects the estimated slope
% |Gg(jw)|: for a slope of A db/decade, one should
take s = round (—\/20) . Parameters « and (3 are re-
sponsible for magnitude matching and also for fine
adjustments in the slope.

Fig. 5 depicts the process of adjusting the
equalizer parameters?.

To see how a and 3 can be determined, suppose
initially s = 0, ie., |Gp(jw)| approximately flat
within the analysis band. In this case, us = u.
Now, the problem consists of minimizing the error
ep, defined as:

ep = Dly — ue] (8)

To minimize ep in a least-squares sense, let the
cost function be:

1
J == 9
~ el )

L1t {f[kT], k € Z} belongs to £2(Z), then D also belongs to
£2(Z), which allows the use of the £2 norm. This finite-energy
requirement is satisfied automatically by the use of finite-time
observation windows.

2From this point on, by an abuse of notation, z~
denote the operator unit time delay. Also, the context will
make it clear whether f denotes the sequence {f(kT}H k € Z}
or its Z-transform.

1 will

Since signals used in the tuning of the equalizer
have a finite number of samples, e can be regarded
as a row vector and ||-|| as the euclidean norm. As a
result, eq. 9 can be rewritten as:

1
J= 5eDeg (10)

The linearity of the wavelet filter bank yields:
ep=Dly—u)=Dy—Du.  (11)
and also:
Du, = Dlau+ 82 'u] = aDu+ 8D[z ']  (12)

Since the wavelet filter bank is not shift-invariant
(due to the downsampling operation), D[z~ 1u] can-
not be written in terms of Du. So, {2~ 'u} must be
treated as a separate sequence, which will be denoted
by {us} for short. Now, to find o and 3 that mini-
mize the cost in eq. 10, it suffices to write:

% =0= —(Dy — aDu — Duy)(Du)T =0 (13)
aJ -
5= 0= —(Dy — aDu — 8Dug)(Dug)” =0 (14)

or, in matrix form:

3[R o

5 Dy(Dug)”
where:
[ Dw(Dw)T  Dug(Du)T
M= [ Du(Dug)”  Dug(Dug)” } (16)

M is non-singular, provided that the input w is
sufficiently rich in a sense that will be made precise
below. In fact, for ease of notation let Du = x and
Dug =y. Then:

[l (@)
A4_[@w>HMF} an

and
2 2 2
det(M) = ||z|]"[yl|]" — (z,9)

=Nl Iyl = el lyl] cos £ ()]
= el Iyl [L —cos® £(a)]  (18)

Thus, M will only be singular if either ||z|| or ||y||
are equal to zero (the input signal has no components
in the analysis band) or else if cosL(z,y) = 1 (z
and y are colinear). Colinearity implies that there
is a constant R € R such that Du = RDuy. Now,
denoting by u” the input signal on the frequency
band delimited by operator D, then Du = RDuy
implies «” (k) = RuP(k — 1), or P (k) = uP(0) R*.

The computational effort required when solving
for @ and 3 is modest, since the number of wavelet
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Figure 5: Tuning the equalizer.

coeflicients is considerably smaller than the number
of samples in the filter bank input.

In the general case (s # 0), it suffices to employ
ug instead of u. The optimum value for s can be
easily obtained by using a search algorithm in Z.

Note that an output (y) equalization scheme
might as well be adopted. However, since physical
systems usually have a lowpass characteristic, that
would lead to a highpass equalizer, undesirably
amplifying measurement noise.

AN APPLICATION EXAMPLE

To exemplify the described technique, a velocity
servomechanism will be considered. TIts transfer
function, between the input signal « and the shalft
speed w, is:

Q(s) 2.5
U(s)  (s+20)(Is? + 5515+ 0.125)

where I = 5.0 x 10~ *K gm? is the inertia momentum
of the load connected to the servo shaft (the inertia
of the servo rotor is supposed much smaller than
I). Let us assume that the load consists of two
interconnected rigid bodies, each one with an inertia
momentum of 0.57.

In the simulation, the fault consists of the rupture
of the connection between the two bodies, which is
modelled by an abrupt 50% reduction in the load
inertia.

In normal conditions, GG(s) has poles in —5.0, —20,
—50 and a DC gain of one. The above-mentioned
fault changes the poles to —11,—20,—44, preserv-
ing the DC gain.

Sampling frequency was set to 250H z (1571rad/s).

RESULTS

The mother wavelet chosen was db8 (from the
Daubechies family). The choice of the best wavelet
for a given problem is still a subject of much
research. As a rule of thumb, wavelets with
longer support yield better resolution in frequency
(improving the matching process and noise rejection)

at the expense of worse time resolution (larger delays
in the detection). In this work, the dbN family
was chosen a priori, the index N = 8 yielding a
good compromise between noise rejection and time
resolution (dbN mother wavelets have a support
width of 2N — 1 and associated filters with 2V taps).

In the tuning and test phases, measurements were
subjected to an additive white gaussian noise with a
standard deviation of 1072,

Results will be evaluated using the following
index:

a maz(abs(residue))post— fault

7 max(abs(residue))pre— fouit

Equalizer tuning

To adjust the parameters of the equalizer, the
servomechanism was excited with a PRBS input
during 16.4s (4096 sampling intervals), as seen in

fig. 6.
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Figure 6: Tuning phase. Dotted line: input u, solid
line: output y.

The detail level of the analysis was set to
m = 6, i.e., the frequency band considered was ap-
proximately between f,/128 (12.3rad/s) and f,/64
(24.6rad/s). Table 1 presents the minimum costs at-
tained for different values of the slope s:



TABLE 1 - Finding the optimum s.

s 0 1 2 3 4
Imin | 3.9 046 1.5 2.6 4.0

As it can be seen, s = 1 yields the best result.
In this case, the values found for the remaining
equalizer parameters are:

a=-0.124 (3=0.136

Fig. 7 illustrates the matching of the wavelet
coeflicients of the output and equalized input.
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Figure 7: Matching between the wavelet coefficients
of the output (solid line) and the equalized input
(dotted line).

Fault Detection Test

In the test phase, the servomechanism was excited
with a square wave, as seen in fig. 8. A fault occurs
exactly in the middle of the test (t = 8.2s).

Figure 8: Test phase (a fault occurs at ¢ = 8.2s).
Dotted line: input u, solid line: output y.

Fig. 9 displays the output of the wavelet fault de-
tector (wavelet coefficients of the difference between

the system output and the equalized input). Re-
mark that the first post-fault coefficient corresponds
to n = 33 (marked by a vertical line). The perfor-
mance index in this case is o = 5.9.

0.

Figure 9: Output of the wavelet fault detector
(absolute value).

For means of comparison, a Luenberger observer
was used to detect the fault in the configuration seen
in fig. 1. Since the fastest pole in the monitored
system is —50, the observer poles were all set to
—50p, p > 1. The observer employed an exact model
of the system and initial errors on state estimation
were set to zero.

Table 2 presents the fault detection performance
of the observer as a function of the position of its
poles. Remark that, due to the adverse effects of
measurement noise [7], lower values of p yield better
results, though still inferior to the one obtained with
the wavelet detector.

TABLE 2 - Effect of changing the observer poles.

p| 10 11 12 15 20
|22 18 16 12 1.1

Fig. 10 displays the observer-generated residue
for p = 1.0 (best result for the observer detector).
It is important to note that, in a real situation,
when only an approximate model is available for
the system, the use of larger values for p might be
required. In this case, the superiority of the wavelet
detector would be even greater.

CONCLUDING REMARKS

When compared to conventional Band-Limiting Fil-
ters, the wavelet approach is seen to be less heuris-
tic, since parameter tuning can be made automat-
ically, with modest computational effort. That po-
tentially allows an easier on-line reconfiguration of
the fault monitor, though this possibility was not ex-
ploited in this work. Also, different frequency bands
can be easily selected, by changing the level of the
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Figure 10: Observer-generated residue (absolute
value). Fault onset is marked by a vertical line.

analysis (m). Note that the restriction of con-
stant quality factor (that is, bands situated be-
tween 2- ™1 f, and 27 ™ f,) can be alleviated by us-
ing wavelet packets, which allow more generic fre-
quency partitions [9].

The problem of detection delay was not con-
sidered in this paper. However, it could be ar-
gued that the use of wavelets with better time reso-
lution would result in smaller delays.

Improvements in the wavelet fault monitor might
be achieved by using a more complex structure for
the equalizer or by performing an adaptation on the
wavelet filters themselves [6].

Generalizing this technique to nonlinear systems
is an interesting and challenging task. In fact, due
to harmonics generation, outputs within a frequency
band may be influenced by inputs at several different
bands. Thus, to perform input-output matching, it
would be necessary to decompose the input signals
at several resolution levels, which should then be
nonlinearly combined (by means of fuzzy inference,
or an artificial neural network, for example).

Future works could attempt to extend the wavelet
approach to the Fault Isolation problem. In this
case, simultaneous analysis of residues in different
frequency bands would be probably required (fig.
11). However, if the effects of different faults on
the output frequency spectrum are similar, more
information transmission paths may have to be
monitored (i.e., more sensors will be needed).
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Figure 11: Monitoring two frequency bands.
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