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ABSTRACT 
 
This work concerns the optimization of treatment schemes 
for viral infections using drugs that stimulate the humoral 
immune response. The dynamics of the disease is based on 
Marchuk's formulation of the behavior of immune systems. 
The model is extended to include the effect of treatment and 
to allow a representation of the pathological consequences 
of the infection and the side effects of the drugs on the 
patient. The performance index uses the concept of fuzzy 
sets to model non-exact subjective quantities such as patient 
well-being, that should be traded off against quantities that 
can be objectively measured, such as cost of medication. 
The admissible controls are assumed to belong to the class 
of piecewise constant functions. A numerical example using 
influenza dynamics show a considerable improvement of 
the optimized drug administration policy, when compared 
to non-optimized policies, in terms of reduction in the 
achieved performance index.  
 
 
1. INTRODUCTION 
 
     The immune system provides defense against genetically 
alien agents that do not contain genetically coded segments 
which makes them recognizable as part of the organism 
(such as bacteria, viruses, alien tissue or tumors). Upon 
detection of an alien agent (antigen), the organism reacts 
generating special cells and molecules (antibodies) to 
neutralize it or destroy it. 
     From primitive cells found on the bone marrow, two 
populations of cells evolve: lymphocytes T and B. Both 
populations, being stimulated by the antigen, proliferate and 
suffer morphological alterations. B lymphocytes generate 
the effecter-cells, which synthesize and segregate 
antibodies; T Lymphocytes evolve to lymphoblasts which, 
by segregating several soluble factors, establish the cell-

type immune response (T-helper cells), actuating primarily 
on the macrophages. A subpopulation of activated T 
lymphocytes (T-killer cells) also acts directly on infected 
cells, segregating citotoxic substances which cause their 
destruction. 
     Several authors have worked on models that describe 
quantitatively the complex phenomena of the immune 
response (Mohler et al. 1980, Asachenkov et al. 1970, Bell 
1970). 
     This work proposes a methodology for the optimization 
of the pharmacological treatment of viral infections based 
on the sub-optimal solution of an optimal control problem. 
The problem is formulated to allow a numerical selection of 
a set of drug administration strategy parameters that yields a 
good compromise between therapeutic and side effects. The 
drug employed is ionol (BUTYLATED HYDROXY 
TOLUENE), an antioxidant which has been tested in the 
treatment of influenza (Meringova et al. 1996) to stimulate 
the humoral immune response. 
     In order to simplify the statement of the problem 
specifications, fuzzy performance indexes are used, 
involving the total amount of medicine expended, the 
patient recovery time and the damage inflicted to the 
organism during infection. 
 
 
2.THE INFECTION MODEL 
 
     In this work, it is used the model proposed in 
Asachenkov et al. 1994, which describes an influenza 
infection and is also suitable to analyze the therapeutic 
action of administered drugs. 
     The model consists on a system of ordinary differential 
equations which describe the dynamics the the virus and 
antibody concentration and also of the populations of cells 
in the infected organism. 
     According to the authors, in order to simplify the 
identification of the parameters, the model was rewritten in 
the following form: 
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where 
 
V(t) :  concentration of virus  
Le(t) :  effector lymphocytes 
Lp(t) :   lymphocyte precursor cells 
F(t) :  concentration of generalized antibodies. 
m(t) :  accumulated damage 
Us(t) :  drug concentration  
u(t) :  external drug input 
 
and δ(.) is a Dirac impulse. The coefficients a1, ... , a16 are 
constants. 
 
     The coefficients ai were extracted from Asachenkov et 
al., 1994, where the identification was carried out using 
data from experiments in which F1 mice were infected 
intranasally with influenza virus A/PR8/34. In order to 
evaluate the organism deterioration during the infection, a 
variable m(t) is introduced, representing the overall damage 
due to the infection and to the side effects of the drugs. It is 
interesting to note that not only the viruses, but also the 
antibodies themselves inflict damage to the infected 
organism. 
 
 
3. MULTI-CRITERIA OPTIMIZATION  
 
     Having modeled the influence of the drug administration 
on the evolution of the infection, the next step is the 
proposal of some criteria to allow the actual computation of 
an optimal treatment policy. One would be concerned, 
therefore, with issues such as: 
 
• which is more effective:  apply a single concentrated 

'one-shot' scheme of the drug or carry out the treatment 
in a continuous way during a longer period with low 
dosages? 

• When the doses should be administered? 
• How much medicine should be administered per dose? 

     One way to consider those issues is to propose 
performance indices and apply the techniques of optimal 
control theory. The indices shoud reflect: 
 
• The cost of the medicine 
• The side effects caused by large doses 
• The physical and psychological stress on the patient 
 
     However, except for the first one, it is difficult to 
translate these aspects in analytical specifications such as an 
LQ performance index. It would be more natural to define a 
cost based on linguistic concepts like “good” and “bad”, 
“better” or “worse”.  Thus, fuzzy logic arises as a 
convenient tool for the problem of defining a performance 
index (Kienitz 1993). 
      An informal description of the desired result for the 
treatment would be: 
 
 
Criterion (a):  'Patient recovery is fast'. 
 
AND 
 
Criterion (b): 'Total amount of drug expended is small'. 
 
AND 
 
Criterion (c): 'The damage to the patient's organism during 
infection is small'. 
 
     The criteria (a), (b) and (c) can be related to the 
minimization of the following variables: 
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     For computational simplicity, gaussian functions were 
adopted as the membership functions for the variables given 
above, as shown in figure 1. The 'standard deviations' were 
adjusted in such a way that for each of z = tH or  z = u_total 
or z = m(tH), the corresponding  membership functions 
µ1(tH),  µ2(u_total) and µ3(m(tH)) reflexted the criteria (a), 
(b) and (c). The logical conective AND was implemented 
by using the function MIN. 
     Since, from a practical point of view, it would be 
difficult to implement a drug administration programme 
with continuously varying drug doses, the admissible 
controls are assumed to belong to the class of piecewise 
constant functions. In order to further simplify the 
optimization problem, the number of switches from one 
level of the drug dosage to another is kept small. In 
particular, the application example in this work will 
consider only the case of pulse therapy, so that the control 
function adopted is a rectangular pulse with parameters t0 



(application time), w (width) and hu (height), as shown in 
figure 2. Due to the low-pass characteristic of the dynamics 
involved, a rectangular pulse can be regarded as an 
approximate model for a “period of intensive therapy”. 

 

0.00 4.00 8.00
Minimizing Variable (z)

0.00

1.00

D
eg

re
e 

of
 M

em
be

rs
hi

p

Membership Function for 'z is small'

 
 

Figure 1  Shape of the Membership Functions 
representing the fuzzy set 'z is small' 
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Figure 2  Drug dose versus time, where the pulse 
is characterized by the parameters to be optimized: 

starting time (ts), width (w) and height (h) 
 
     The performance index to be maximized is, therefore: 
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4. A NUMERICAL EXAMPLE 

 
     The combination of non-linear state equations and fuzzy 
performance indexes yields a problem of formidable 
complexity. So, instead of searching an analytical solution, 
a numerical optimization algorithm is used. 
     The simulations of the system were carried out using 
MATLAB/SIMULINK© package and the maximization of 
the function J:R3 → R was performed by the flexible 
polyhedron algorithm with simulated annealing. The 
modification of the original flexible polyhedron (Nelder-
Mead) algorithm was necessary to search for the global 
maximum (Yoneyama and Cardozo 1994). 

     A sub-optimal point (denoted with [.]*) was found after 
36 iterations: 
 

( ts*, w*, h* ) = ( 4.7, 5.2 , 1.9 ) 
J* = 0.97 

 
with tol = 10-3. The actual optimal point should be the 
global maximum point of J. Although the simulated 
annealing mechanism suggests that J* is a good point, 
eventually it may achieve only local maximum and may not 
globally maximize J. 

 
 

5. SIMULATION RESULTS 
 

     Figures 3 to 6 present the evolution of V(t), Lp(t), Le(t) 
and F(t) for the cases with and without treatment. 
    It is interesting to note that the optimal starting time is 
posterior to the activation of the resting precursors. In fact, 
administration of drugs that stimulates the production of 
antibodies becomes effective only when immuno competent 
lymphocytes are already present. Prior administration of 
this type of drugs just increases the side effects. Other types 
of drugs with different mechanisms (such as interferon, 
enzime inhibitors, etc...)  act on different stages of the 
immuno response (by protecting lymphocytes, reducing 
viral replication rate, etc...) so that the proposed method 
requires modification of the infection model to accomodate 
these cases.  It can also be noted that in many cases, the 
appearance of clinical symptoms occurs close in time in 
relation to the optimal starting time for the treatment. 
     Because the drug does not attack the virus itself in a 
direct way, it presents a rather delayed response. Hence, the 
example could be adapted to other longer lasting viral 
infections. 
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Figure 3  Surge of Virus for the cases with and 
without drug therapy. 
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Figure 4  Dynamics related to the activation of resting  
precursors for the cases with and   without drug therapy. 
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Figure 5  Dynamics of Effectors for the cases with 
and without drug therapy. 
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Figure 5  Dynamics of Antibodies for the cases with 
and without drug therapy. 

 
     The example used in this work is a self-limited viral 
infection, so that the patient would recover even without 
treatment. Therefore, if the side-effects of the drug were 
very large, the optimal policy would be to use very small 
doses. However, if the infection were related to a life-
threatening desease, the performance index and the 'damage 
equation m(t)' should be adjusted to reflect the necessity of  
intensive treatment. 

 
 

6. CONCLUSIONS 
 

     The main difficulty with the proposed framework is that 
the model parameters can vary considerably from one 
specific patient to another while identification procedures 
may be impractical in many cases because of urgency or 
discomfort. The present example used “averaged” 
parameters and may be useful in 'what if' simulations so as 
allow development of intuitive feeling on how a therapeutic 
procedure can be tuned by the physician for each patient. 
     In principle, the optimal control problem could be solved 
for more general control inputs u, invoking, for example, 
dynamic programming equations which might be solved by 
numerical methods such as multiple-shooting or quasi-
linearization (Tolle 1975). However, the continuously time-
varying curve for the drug doses offers considerable 
difficulty in terms of actual implementation. Moreover, due 
to the difficulty in obtaining accurate estimates for the 
model parameters corresponding to a specific patient, it 
may be advisable to use a simpler and more robust 
therapeutic scheme than an optimal but more sensitive 
treatment policy. 
     It is interesting to remark that the optimal application 
time (5 days) coincides with the appearance of the first 
symptoms of influenza (people become sick 3-10 days after 



being exposed to the virus). Thus, the results suggest that, 
for this particular infection, therapeutic benefits are not 
enough to justify the adoption of preventive measures (that 
is, administering drugs before the symptoms appear). 
     Further research is needed in order to determine how 
close to the minimum of the cost surface is the solution 
found in this work. The model could also be extended to 
include non-linearities (such as saturation) in the control 
input u. 
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